
Remote Sens. 2014, 6, 7610-7631; doi:10.3390/rs6087610 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

The Potential of Time Series Merged from Landsat-5 TM and 
HJ-1 CCD for Crop Classification: A Case Study for Bole and 
Manas Counties in Xinjiang, China 

Pengyu Hao 1,2, Li Wang 1,*, Zheng Niu 1, Abdullah Aablikim 3, Ni Huang 1, Shiguang Xu 1 

and Fang Chen 4 

1 The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital 

Earth, Chinese Academy of Sciences, Beijing 100101, China; E-Mails: haopy@radi.ac.cn (P.H.); 

niuzheng@radi.ac.cn (Z.N.); huangni@radi.ac.cn (N.H.); xusg@radi.ac.cn (S.X.) 
2 University of Chinese Academy of Sciences, Beijing 100049, China 
3 Xinjiang Survey Organization, National Bureau of Statistic of China, Xinjiang 830001, China;  

E-Mail: aablikim@163.com 
4 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,  

Chinese Academy of Sciences, Beijing 100094, China; E-Mail: fangchen@ceode.ac.cn 

* Author to whom correspondence should be addressed; E-Mail: wangli@radi.ac.cn;  

Tel.: +86-10-6480-6252. 

Received: 2 January 2014; in revised form: 4 August 2014 / Accepted: 5 August 2014 /  

Published: 19 August 2014 

 

Abstract: Time series data capture crop growth dynamics and are some of the most 

effective data sources for crop mapping. However, a drawback of precise crop classification 

at medium resolution (30 m) using multi-temporal data is that some images at crucial  

time periods are absent from a single sensor. In this research, a medium-resolution, 15-day 

time series was obtained by merging Landsat-5 TM and HJ-1 CCD data (with similar 

radiometric performances in multi-spectral bands). Subsequently, optimal temporal windows 

for accurate crop mapping were evaluated using an extension of the Jeffries–Matusita (JM) 

distance from the merged time series. A support vector machine (SVM) was then used to 

compare the classification accuracy of the optimal temporal windows and the entire time 

series. In addition, different training sample sizes (10% to 90% of the entire training 

sample in 10% increments; five repetitions for each sample size) were used to investigate 

the stability of optimal temporal windows. The results showed that time series in optimal 

temporal windows can achieve high classification accuracies. The optimal temporal 

windows were robust when the training sample size was sufficiently large. However, they 
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were not stable when the sample size was too small (i.e., less than 300) and may shift in 

different agro-ecosystems, because of different classes. In addition, merged time series had 

higher temporal resolution and were more likely to comprise the optimal temporal periods 

than time series from single-sensor data. Therefore, the use of merged time series increased 

the possibility of precise crop classification. 

Keywords: multi-sensor; time series; crop classification; Landsat-5 TM; HJ-1 CCD; 

sample size 

 

1. Introduction 

Multi-temporal remote sensing data can be used to describe changes in vegetation characteristics 

over time [1–3], and cropland distribution maps can be produced by classifying multi-temporal remote 

sensing images throughout the growing season [4–6]. At medium spatial resolution (10–100 m),  

multi-temporal Landsat-5 Thematic Mapper (TM) images, with 30-m spatial resolution and a 16-day 

revisit frequency, have a proven potential for crop classification [7,8]. Although images of key  

time-periods are sufficient for accurate crop mapping [9–11], misclassification may still occur, because 

cloud-free images that cover all critical periods are difficult to obtain from large areas using a single 

sensor, such as the Landsat-5 TM. 

The Huan Jing Constellation satellite system, launched in 2008, was expected to overcome these 

limitations, because HJ-1 CCD data have high temporal resolution (four days) and similar wavebands 

(near-infrared, red, green and blue), medium spatial resolution (30 m) and radiometric calibration 

performance to Landsat-5 TM [12]. Previous research has demonstrated the potential of HJ-1 CCD 

data for distinguishing crop types [11,13]. However, there are only a few studies in which Landsat 5 

TM data were merged with HJ-1CCD data to obtain a dense time series at 30-m spatial resolution for 

crop mapping. 

Therefore, the objectives of this research are as follows: (1) to compare the radiometric 

performance of Landsat-5 TM and HJ-1 CCD data; (2) to select the optimal temporal windows for 

accurate crop classification from a time series obtained by merging Landsat-5 and HJ-1 CCD data;  

(3) to evaluate the potential of time series data for an entire growing season and from optimal temporal 

windows for crop mapping using a support vector machine (SVM); and (4) to detect the stability  

of optimal temporal windows when different training sample sets are used. We employed both  

multi-spectral bands and NDVI in this research, because spectral diversity provides a richer source of 

information for accurate crop classification [14]. 

2. Study Regions and Datasets 

2.1. Description of Study Area and Crop Calendar 

For this study, we selected two representative agricultural regions in northern Xinjiang. One is 

located in Bole County, which contains 32 kha of cropland (44°20ʹ–45°23ʹN, 80°40ʹ–82°42ʹE), and the 

other is located in Manas County, which has 180 kha of cropland (43°17ʹ–45°20ʹN, 85°17ʹ–86°46ʹE) 
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(Figure 1a–c). Both regions have a temperate continental climate that is characterized by dry weather 

and drought. The annual average temperature and rainfall are 7.0 °C and 202.4 mm in Bole and 7.2 °C 

and 208.2 mm in Manas, respectively. 

Figure 1. Study areas. (a) Location of Bole and Manas Counties in Xinjiang. (b) Bole  

(11 July 2011); and (c) Manas (13 July 2011). The images are standard false color 

composites of Landsat-5 TM. The green patterns on the images show the distribution of 

ground-truth data. (d) Vegetation cover fractions for different crop types over the course  

of a year. 

 

The dominant crops grown in the study areas include cotton, maize, watermelon, grape, tomato, 

wheat-maize and wheat. The vegetation cover fraction for each crop type over the course of a year is 

presented in Figure 1d; black boxes represent a dense canopy closure; grey boxes represent open 

canopy closure; and white boxes represent bare soil or, from November until March, snow. The 

planting dates for cotton, maize, watermelon, tomato and grape are in early April, while wheat is 

mostly planted in early November to begin growth in April. In addition, summer maize is planted as a 

second crop during early August (after the planting period of wheat). Cotton, grape, maize and 

watermelon grow mostly during the June–July period, while wheat grows mostly during April. The 

harvest date for wheat is in late June, while, among the summer crops, watermelon and tomato are 

harvested in August, maize is harvested in early September and grapes and cotton are harvested during 

the August–September and September–October periods. 
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2.2. Datasets 

2.2.1. Landsat-5 TM and HJ-1 CCD Data 

The Huan Jing (HJ) Constellation satellites were launched by the Chinese government in 2008.  

HJ-1 has two satellites (HJ-1A and HJ-1B), and each satellite has two CCD cameras. The HJ 

Constellation has a 720-km lateral coverage, 30-m spatial resolution, which is similar to TM images, 

and a temporal resolution of four days. The CCD cameras have three visible bands and one  

near-infrared band. Table 1 and Figure 2 show the similarity in spectral response function and spectral 

bands of Landsat-5 TM and HJ-1 CCD [15,16]. Landsat-5 has a revisit time of 16 days, but cannot 

cover an entire growing season at its 15-day temporal resolution, because of cloud cover. Therefore, 

we merged Landsat-5 TM and HJ-1 CCD images to obtain an image time series at a 15-day  

temporal resolution. 

Table 1. Landsat-5 TM and HJ-1 CCD spectral bands. 

Landsat-5 TM Spectral Bands HJ-1 CCD Spectral Bands 

# Band Width (μm) GSD (m) # Band Width (μm) GSD (m) 

1 0.45–0.515 30 1 0.43–0.52 30 
2 0.525–0.605 30 2 0.52–0.60 30 
3 0.630–0.690 30 3 0.63–0.69 30 
4 0.775–0.900 30 4 0.76–0.90 30 
5 1.550–1.750 30 
7 2.090–2.350 30 

GSD: ground sample distances. 

Figure 2. The spectrum response function of multi-spectral bands of the Landsat-5 TM and 

HJ1A/B CCD. 
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The images used in this study are listed in Table 2. First, data from both sensors (Landsat-5 TM and  

HJ-1 CCD) were obtained (Numbers 12–14 and the TM images in bold in Table 2) to estimate the 

similarity between Landsat-5 TM and HJ-1 CCD images during three different time periods. Then, all 

images with a cloud cover of less than 10% (Numbers 1–11 in Table 2) were used to acquire the time 

series with an approximate 15-day temporal resolution. The Landsat-5 TM reflectance product  

(CDR) [17] and the HJ Level 2 product were used in this study. 

Table 2. Landsat-5 TM and HJ-1 CCD images for both study regions. 

Number 
Bole Manas 

Data Sensor Name Data Sensor Name 

1 6 April 2011 TM 24 April 2011 TM 
2 22 April 2011 TM 10 May 2011 TM 
3 10 May 2011 HJ1B-CCD1 28 May 2011 HJ1B-CCD2 
4 24 May 2011 TM 28 June 2011 TM 
5 8 June 2011 HJ1A-CCD1 13 July 2011 TM 
6 11 July 2011 TM 29 July 2011 TM 
7 27 July 2011 TM 15 August 2011 HJ1B-CCD2 
8 16 August 2011 HJ1B-CCD1 16 September 2011 HJ1B-CCD1 
9 13 September 2011 TM 1 October 2011 TM 

10 27 September 2011 HJ1A-CCD1 15 October 2011 HJ1A-CCD2 
11 16 October 2011 HJ1A-CCD2 27 October 2011 HJ1A-CCD2 
12 23 May 2011 HJ1A-CCD2 10 May 2011 HJ1A-CCD2 
13 29 July 2011 HJ1A-CCD2 13 July 2011 HJ1A-CCD1 
14 14 September 2011 HJ1A-CCD2 1 October 2011 HJ1B-CCD2 

Images were georeferenced to the UTM WGS 84 zones, 44N (Bole) and 45N (Manas). The HJ 

images were registered to the TM images, achieving an RMSE of less than 0.3 pixels using a second 

order polynomial transformation and bi-linear resampling. Subsequently, radiance calibration and 

FLAASH atmospheric correction were performed using ENVI for HJ-1 CCD images [18]. Together 

with the reflectance of multi-spectral bands, the Normalized Difference Vegetation Index (NDVI) was 

used in this research, because NDVI can describe the phenological characteristics of different crops. 

We used visible (red) and near-infrared (NIR) bands to calculate NDVI (Equation (1)). NDVI = ρ(NIR) − ρ(Red)ρ(NIR) + ρ(Red) (1)

where ρ(NIR) and ρ(Red) are the reflectance values of the NIR and red bands, respectively. 

2.2.2. Ground-Truth Data 

Ground-truth data were obtained by fieldwork in the study regions during 2011. Fields were 

selected to represent the full variety of crop types and an even distribution across the study areas. 

A total of 525 fields in Bole and 459 fields in Manas were selected and surveyed. For each field, the 

crop type was collected as attribute information. Field boundaries were recorded using GPS and 

digitized as polygons in ArcGIS. To avoid boundary pixels, polygons were converted to a raster format 

using the TM grid. In total, 9,084 sample pixels for Bole and 8490 pixels for Manas were obtained. 
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The distribution of ground-truth data is shown in Figure 1. The amounts of training and validation 

samples for each crop type are shown in Table 3. 

Table 3. Number of surveyed fields, training samples and validation samples. 

Crop Types 
Bole Manas 

Surveyed Fields Training Validation Surveyed Fields Training Validation 

Cotton 229 500 4542 269 350 4081 

Maize 36 150 477 63 300 1674 

Grape 43 300 1143 0 0 0 

Wheat 74 350 1038 54 300 1468 

Wheat-Maize 68 200 840 28 50 434 

Watermelon 75 350 1044 0 0 0 

Tomato 0 0 0 45 150 833 

Total 525 1850 9084 459 1150 8490 

3. Methods 

The overall methodology used in this study is presented in Figure 3. First, we evaluated the 

similarity between Landsat-5 TM and HJ-1 CCD images by comparing the NDVI and land-surface 

reflectance of multi-spectral bands. Then, Landsat-5 TM and HJ-1 CCD images were merged to build 

a time series with a 30-m spatial and 15-day temporal resolution. Multi-spectral bands and NDVI time 

series of the training and validation pixels were extracted, and further analysis was based on the 

extracted multi-spectral and NDVI time series. Afterwards, the most relevant time windows were 

selected from both merged and single TM time series using an extension of the Jeffries–Matusita (JM) 

distance. Then, a comparison between utilizing optimal temporal windows and the entire merged time 

series for classification was conducted by analyzing overall accuracies, and a support vector machine 

(SVM) was selected as the classifier. In addition, the stability of the optimal temporal windows relative 

to the training sample size was determined for both study regions. The size of the sample sets varied 

from 10% to 90% of the entire training sample size in 10% increments. Five random repetitions were 

selected for each sample size. 

3.1. Similarity Evaluation between Landsat-5 TM and HJ-1 CCD Data 

We evaluated the radiometric similarity between Landsat-5 TM and HJ-1 CCD data by comparing 

the land-surface reflectance and NDVI of the two sensors for similar dates. To reduce the potential 

impacts of registration inaccuracy (Section 2.2), we defined subsets of homogeneous regions of 

interest (ROI) with 3 × 3 windows located in the middle of larger homogeneous “patches” [12]. 

Average values of these sampling windows were used to compare similarities between Landsat-5 TM 

and HJ-1 CCD images. Through this process, we defined subsets of the ROIs for different crop types, 

selecting 170 and 153 windows within Bole and Manas, respectively. Scatter plots and linear 

relationships were used to examine how Landsat-5 TM and HJ-1 CCD images differed in performance. 
  



Remote Sens. 2014, 6 7616 

 

 

Figure 3. Methodology used in this study. 

 

3.2. Extension of the Jeffries–Matusita Distance 

In this study, we used the JM distance to measure the period-by-period separability for each  

pair of crops, because previous research has shown that JM distance can provide a more accurate 

classification than other distance measures, such as Euclidean distance or divergence [10,19]. The JM 

distance between a pair of class-specific functions is given by:  JM൫c, c൯ = න ቆඥp(ݔ|c) − ටp൫x|c൯ቇଶ dݔ௫  (2)

where x denotes a span of VI time series values and c and c (lowercase c) denote the two crop classes 

under consideration. Under normality assumptions, Equation (2) is reduced to JM = 2(1 − eି), where:  

B = 18 ൫μ − μ൯ ൬C + C2 ൰ିଵ ൫μ − μ൯ + 12 lnۇۉተተ หC + Cห2ට|C| × หCหተተ(3) ۊی

and C and C (uppercase C) are the covariance matrixes of class i and j, respectively. Additionally, |C| and หCห are the determinants of C and C, respectively. The JM distance ranges from 0 to 2, with a 

large value indicating a high level of separability between two classes [20]. 
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When considering the separability of multi-classes, the weights of different classes are different, 

because sample amounts for different classes vary. To select optimal temporal windows for multi-class 

cases, an extension of the JM distance, J୦, was used. The J୦ distance is based on Bhattacharyya 

bounds; and it is calculated by Equation (4). It gives greater importance to classes with high a priori 

probabilities in the selection process [21].  

J୦ =ටp(w) × p(w)ே
வ

ே
ୀଵ × JMଶ(݅, ݆) (4)

where “N” is the number of classes, p(w) and p(w) are the a priori probabilities of class i and j, 

which were calculated using the combination of training and validation samples in Table 3. 

3.3. Optimal Time Period Selection 

To understand how separability changes over the growing season, we examined the JM distance of 

training samples during the entire growing season and every time period for all pair-wise crops. When 

selecting the optimal temporal window, we first selected the single time period with the highest  J୦ distance. Then, we combined any one of the other time periods to the selected period, calculated 

the J୦ distances of all possible combinations and selected the combination of the largest J୦ distances  

as the optimal time period combination. Finally, we repeated the process to obtain the optimal 

combination order. 

3.4. Support Vector Machine (SVM) 

SVM is a commonly used classifier whose performance appears to be well suited for remote 

sensing applications [22]. SVMs use kernel functions to transform nonlinear correlations into a higher 

(Euclidean or Hilbert) space, making the problem linearly separable and allowing the detection of the 

hyperplane with the maximum margin. Then, one-against-one and one-against-others methods are 

applied to solve multi-class problems. The classification result, probabilistic output and certainty of 

single classifiers were obtained through the integration of single classifiers. To implement the training  

and modeling procedure, we used the SVM library (libSVM) [23]. The regression model used in this 

research was the epsilon SVR with a radial basis function (RBF) as the kernel type. In addition, the 

training of the SVM includes choosing a kernel parameter γ and a regularization parameter C (cost). 

C controls the penalty associated with misclassified training samples, and γ determines the gamma of 

the kernel function. In this study, C and γ were selected using a genetic algorithm [24]. Multi-spectral 

bands and NDVI time series of training samples (Table 3) were used to train the SVM model, and crop 

labels of the validation samples were predicted with the SVM model. Then, the results were confirmed 

using the crop labels of the validation samples. 
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In this research, a confusion matrix and overall accuracy (OA) were employed to evaluate the 

performance of the entire time series and optimal temporal windows. OA is computed as dividing the 

number of correctly classified pixels (i.e., the sum of the major diagonal of the matrix) by the total 

number of pixels in the confusion matrix. This is one of the simplest descriptive statistics derived from 

a confusion matrix to assess the accuracy of the SVM classification results [25]. 

4. Results and Discussion 

4.1. Similarity Evaluation for Landsat-5 TM and HJ-1 CCD Data 

Three matching images (acquired in May, July and September) were used to compare the similarity 

between Landsat-5 TM and HJ-1 CCD data in both study areas. The scatter plots and linear 

relationships of multi-spectral bands and NDVI for the matching images are shown in Figures 4 and 5 

for Bole and Manas, respectively. In both study areas, the R2 values are larger than 0.9 for both  

multi-spectral bands and NDVI, which coincides with previous research and indicates that Landsat-5 

TM and HJ-1 CCD data have a strong linear relationship [26–29]. The slopes for the first three bands 

(Bands 1, 2 and 3) are slightly larger than one, which indicates that Landsat-5 TM data are more 

sensitive to radiometric changes in these bands. For the fourth band, the slope is less than one, 

suggesting that HJ-1 CCD data are more sensitive to changes in Band 4. Overall, HJ-1 CCD and 

Landsat-5 TM images have a similar spatial resolution, spectral bands and radiometric performance. 

Therefore, multi-spectral bands and NDVI data from both sensors were utilized to obtain the time 

series for this research. 

4.2. Separability of Different Crops and Optimal Time Period Selection 

We merged Landsat-5 TM and HJ-1 CCD images to obtain time series at 30-m spatial and 15-day 

temporal resolutions, which contain both multi-spectral bands and NDVI. Then, JM distances were 

used to analyze the separability of crops within each time period and throughout the entire growing 

season. JM distances for each pair-wise crop for the entire growing season (Table 4) were higher  

than 1.95, which shows that crops have a high level of separability in both study areas. 

Period-by-period JM distances in Bole and Manas (Figures 6 and 7) show that wheat is highly 

separable (JM > 1.9) from summer crops throughout the entire year. Wheat and wheat-maize have high 

levels of separability in July (JM > 1.9), because wheat is harvested and summer maize has developed 

during that time period. Among summer crops, the greatest separability occurs during the “initial 

spring green-up phase” and/or “late senescence phase” [30]. For example, a high degree of separability 

between watermelon and the other summer crops (JM > 1.5) occurs mainly in September, because the 

growing season for watermelon is shorter than that for the other summer crops. Cotton and maize also 

have their highest separability in September, which reflects the earlier senescence of maize. Similarly, 

grape is most discernible from cotton during the April–May and August–September periods, which 

again reflects different rates of growing and senescence. 
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Figure 4. Scatter plots of the land surface reflectance and NDVI data from HJ-1 CCD and 

Landsat-5 TM images of Bole. 

 
Notes: The red line is 1:1 line. 
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Figure 5. Scatter plots of land surface reflectance and NDVI data from HJ-1 CCD and 

Landsat-5 TM images of Manas. 

 
Notes: The red line is 1:1 line. 
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Figure 6. JM distance values for all pair-wise crop comparisons for the entire time series 

using training samples from Bole. 

 

Table 5 shows the order of scene combinations for Bole and Manas using merged time series. We 

selected four scene combinations for Bole and two scene combinations for Manas (in bold) as optimal 

temporal windows for crop classification (Table 6), because adding other images increased the 

separability by only a small degree (i.e., J୦ increased by less than 0.2). Because Bole and Manas have 

different crops (Figures 6 and 7), the selected optimal temporal windows are different in the two  

study regions.  
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Figure 7. JM distances values for all pair-wise crop comparisons for the entire time series 

using training samples from Manas. 

 

In Bole, the optimal temporal periods are mainly in April, September and October, whereas in 

Manas, the selected temporal periods are mainly in July and September. For a comparison, the same 

number of TM image combinations (in bold) were also selected. In Manas, all optimal images are TM 

images, whereas in Bole, the separable level of optimal time periods selected from merged data is slightly 

higher than that of optimal periods selected from TM time series only (J୦ is 0.2 greater) (Table 7). This is 

because the merged data cover the optimal temporal window better than TM data alone. For example, in 

Bole, Landsat-5 TM did not record a cloud-free image in October. Generally, although it is possible to 

obtain all images at optimal time periods using a single sensor, merged time series have a higher temporal 

resolution and are more likely to comprise images in the optimal temporal windows. 
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Table 4. Jeffries–Matusita (JM) distances for all pair-wise crop comparisons for the entire 

time series. 

Crop Type Maize Grape Wheat Watermelon Wheat-Maize 
Overall separability of entire growing season in Bole 

Cotton 1.975 1.961 2 2 2 
Maize 2 2 2 2 
Grape 2 2 2 
Wheat 2 2 

Watermelon 2 
Crop Type Maize Wheat Tomato Wheat-Maize 

Overall separability of entire growing season in Manas 
Cotton 2 2 2 2 
Maize 2 2 2 
Wheat 2 2 

Tomato 2 

Table 5. Scene combination and their extension of JM distances for the entire time series. 

Scene Combination 
Number 

Bole Mans 
Extension 

JM Distance 
Scene Combination 

Extension 
JM Distance 

Scene Combination 

11 9.554 1 2 3 4 5 6 7 8 9 10 11 7.584 1 2 3 4 5 6 7 8 9 10 11 
10 9.547 1 2 3 4 5 6 8 9 10 11 7.584 1 2 4 5 6 7 8 9 10 11 
9 9.537 1 2 3 4 5 6 8 9 11 7.584 1 2 4 5 6 7 8 9 10 
8 9.525 1 2 3 5 6 8 9 11 7.584 1 2 4 5 6 7 8 9 
7 9.499 1 2 3 5 8 9 11 7.584 1 4 5 6 7 8 9 
6 9.424 1 2 3 8 9 11 7.584 1 4 5 6 7 9 
5 9.307 1 2 8 9 11 7.584 1 5 6 7 9 
4 9.151 1 2 9 11 7.583 1 5 6 9 
3 8.930 2 9 11 7.581 1 6 9 
2 8.596 2 9 7.554 6 9 
1 7.074 9 6.860 6 

Table 6. JM distance for all pairwise crop comparisons for the optimal temporal window. 

Crop Type Maize Grape Wheat Watermelon Wheat-Maize 
Selected time periods in Bole: TM (7/27 and 9/13) HJ1A-CCD1 (6/8) and HJ1A-CCD2 (10/16) 

Cotton 1.742 1.526 2 2 2 
Maize 1.984 2 2 2 
Grape 2 1.98 2 
Wheat 2 2 

Watermelon 2 

Crop Type Maize Wheat Tomato Wheat-Maize 

Selected time periods in Manas: TM (7/13, 7/29), HJ1B-CCD1 (9/16) and HJ1A-CCD2 (10/15) 

Cotton 1.997 2 2 2 
Maize 2 2 2 
Wheat 2 2 

Tomato 2 
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Table 7. Scenes combination and their extension of JM distances for the TM time series. 

Scene Combination 
Number 

Bole Mans 
Extension JM 

Distance 
Scene 

Combination 
Extension JM 

Distance 
Scene 

Combination 

6 9.186  1 2 4 6 7 9 7.428 1 2 4 5 6 9 
5 9.017  1 2 6 7 9 7.428 1 3 4 5 6 
4 8.898 1 2 7 9 7.428 1 4 5 6 
3 8.763  1 2 9 7,427 1 5 6 
2 8.596  2 9 7.424 5 6 
1 7.074  9 6.860 6 

Admittedly, single sensors could record time series at high temporal resolution and provide images 

covering the optimal temporal window sometimes. For example, Van Niel and McVicar [9] obtained 

17 scenes of ETM+ images and selected the optimal temporal window from the entire time series. 

However, their study area, which was completely covered by two overlapping Landsat paths, was 

extremely small. In large areas, it is difficult to obtain sufficient cloud-free data at a high temporal 

resolution with a single sensor. Ju and Roy [31] discovered the possibility of acquiring cloud-free 

images for the years 2001 and 2003, and their results showed that we can acquire at least one  

cloud-free Landsat ETM+ observation per year for the majority of global land scenes. However,  

the possibility of acquiring cloud-free images in each season is limited to only about 50% during 

winter and fall and 60% during summer and spring on average, and it is much more difficult to acquire 

cloud-free Landsat images for large areas at a 15-day temporal resolution in a large area. A limited 

number of images acquired from a single sensor can be used for crop classification [32]. For example, 

Conrad, et al. [33] showed that using two images from a single sensor to map dominating crops could 

produce acceptable accuracy. However, in high-agrodiversity regions, classification results could be 

further improved by a fusion of Landsat data with remotely sensed data from other sensing systems 

and selecting the optimal temporal steps [10]. 

4.3. Pixel-Based Classification Accuracy 

Classification accuracies and kappa statistics for Bole and Manas were estimated using validation 

samples (Tables 8 and 9). Bolded numbers represent pixels that are correctly classified. The overall 

accuracies for both the entire time series and the optimal temporal window are above 90%, and the 

kappa coefficients are higher than 0.9, which is acceptable for crop mapping. 

In the classification results for the Bole optimal temporal window, both producer’s accuracies (PA) 

and user’s accuracies (UA) for cotton, watermelon, winter wheat and wheat-maize are over 90%. 

Grape has the lowest UA (72.92%), because 354 cotton pixels were mislabeled as grape, which is 

consistent with the results from Section 4.2 that cotton and grape have the lowest separability level 

among all pair-wise crops in the optimal temporal window. For other crops, maize has the lowest PA 

(80.29%). When the entire time series is used, overall accuracy improves (96.49%) and the number of 

correctly classified pixels of all crop types increases. In particular, nearly all maize pixels are labeled 

correctly, but more than 200 cotton pixels are still mislabeled. 
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Table 8. Evaluation of crop classification performance in the Bole study area for the entire 

time series and optimal temporal window using the SVM classifier. 

Classified Data 
Reference Data 

PA (%) 
Cotton Grape Maize Watermelon Wheat Wheat-Maize 

Classification using the optimal temporal window where kappa = 0.9017 and overall accuracy = 93.05% 

Cotton 4155 354 16 17 0 0 91.48% 
Grape 24 1085 0 34 0 0 94.93% 
Maize 65 22 383 7 0 0 80.29% 

Watermelon 0 13 1 1025 5 0 98.18% 
Wheat 0 0 0 14 1024 0 98.65% 

Wheat-Maize 41 14 0 3 1 781 92.98% 
UA (%) 96.97% 72.92% 95.75% 93.18% 99.42% 100.00% 

Classification using the entire time series where kappa = 0.9500 and overall accuracy = 96.49% 

Cotton 4323 215 4 0 0 0 95.18% 
Grape 50 1089 0 4 0 0 95.28% 
Maize 10 4 463 0 0 0 97.06% 

Watermelon 1 3 0 1040 0 0 99.62% 
Wheat 0 2 0 12 1024 0 98.65% 

Wheat-Maize 14 0 0 0 0 826 98.33% 
UA (%) 98.29% 82.94% 99.14% 98.48% 100.00% 100.00% 

Table 9. Evaluation of crop classification performance in the Manas study area for the 

entire time series and optimal temporal window using the SVM classifier. 

Classified Data 
Reference Data 

UA (%) 
Cotton Maize Tomato Wheat Wheat-Maize 

Classification using the optimal temporal window where kappa = 0.9163 with overall accuracy as 94.18% 

Cotton 3929 57 79 2 14 96.28% 
Maize 8 1619 47 0 0 96.71% 

Tomato 6 44 774 9 0 92.92% 
Wheat 2 55 169 1241 1 84.54% 

Wheat-Maize 0 0 0 1 433 99.77% 
PA (%) 99.59% 91.21% 72.40% 99.04% 96.65% 

Classification using the entire time series where kappa = 0.9182 with overall accuracy as 94.32% 

Cotton 3935 56 73 5 12 96.42% 
Maize 9 1613 52 0 0 96.36% 

Tomato 4 46 774 9 0 92.92% 
Wheat 3 26 185 1253 1 85.35% 

Wheat-Maize 0 0 0 1 433 99.77% 
PA (%) 99.60% 92.65% 71.40% 98.82% 97.09% 

In Manas, both the optimal temporal window and entire time series achieve similar classification 

accuracy, with overall accuracies above 90%. Cotton, maize and wheat-maize are easily distinguished 

from the other crops, with PA and UA above 90%. Wheat is difficult to separate from tomato, because 

more than 150 wheat samples were mislabeled as tomato, and tomato was also confused with other 

crops (cotton and maize). 
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When comparing data for the entire time series and optimal temporal window, the former exhibits 

only slightly higher classification accuracy. This indicates that using optimal time periods leads to 

acceptable classification accuracy (for example, overall accuracy better than 90%), and adding more 

images has little positive effect on improving classification accuracy. Other studies have also observed 

this phenomenon when using multi-temporal, multi-spatial and microwave data for classifying crop 

types [9–11,34,35]. However, accurate crop classification depends on “optimal scene selection,” and 

misclassification may occur due to a lack of data in the “optimal temporal window” [10]. 

4.4. Scene Combination Order Using Different Sample Sizes 

We varied training sample sizes from 10% to 90% of the entire training samples and extracted the 

scene combination order using different sample amounts. Five repetitions were randomly selected for 

each sample size (Table 10). The bolded scenes are the selected temporal periods. In both study areas, 

when the training sample size is 80% or 90% of the entire sample size, the scene combination order 

varies little, and the selected temporal periods are equal to those using all training samples. 

Conversely, when the number of training samples is between 30% and 60% of the entire sample size, 

the scene combination order changes slightly and, in most cases, the majority of the selected optimal 

temporal periods is equal to those selected using the entire sample size. For example, when the training 

sample size is 40% of the entire sample size, three out of four selected time periods are the same as the 

optimal temporal periods for both Bole and Manas (Table 5). However, when the training sample size 

is less than 20%, the scene combinations for the five repetitions vary significantly, and the selected 

time periods are different from the optimal time windows (Table 5), especially in Bole. This may be 

because the training sample size is too small (about 300 training samples), and the change of selected 

time periods is attributed to some atypical samples. Overall, the same optimal temporal windows will be 

identified when training samples are sufficiently large (more than 30% of the entire training sample size). 

Table 10. Scenes combination order with different sample sizes. 

Sample 

Size 
Scene Combination Order in Bole Scene Combination Order in Manas 

90% 

9 2 11 1 8 3 5 6 4 10 7 6 9 1 5 7 4 8 2 10 11 3 

9 2 11 1 8 3 5 6 7 4 10 6 9 5 7 1 4 8 2 10 11 3 

9 2 11 1 8 3 5 6 4 10 7 6 9 1 4 7 5 8 10 2 11 3 

9 2 11 1 8 3 5 6 4 7 10 6 9 1 5 7 4 8 2 10 11 3 

9 2 11 1 8 3 5 6 4 10 7 6 9 1 4 7 5 8 10 3 11 2 

80% 

9 2 11 1 8 3 5 6 4 10 7 6 9 1 4 7 5 8 10 3 11 2 

9 2 11 1 8 3 5 6 4 10 7 6 9 1 4 7 5 8 2 10 11 3 

9 2 11 1 8 3 5 6 7 4 10 6 9 1 4 7 5 8 10 3 11 2 

9 2 11 1 8 3 5 6 10 4 7 6 9 1 5 7 4 8 11 10 2 3 

9 2 7 1 3 8 5 11 6 10 4 6 9 1 4 7 5 8 10 2 11 3 

70% 

9 2 11 1 8 3 5 6 4 7 10 6 9 1 5 7 4 8 10 2 11 3 

9 2 8 1 3 5 6 11 7 10 4 6 9 5 1 7 4 8 2 10 11 3 

7 10 2 3 1 8 5 11 6 9 4 6 9 1 5 7 4 11 10 8 2 3 

9 2 11 1 8 3 5 4 6 10 7 6 9 1 5 7 4 11 10 2 8 3 

9 2 7 1 3 8 5 6 11 10 4 6 9 1 4 7 5 8 2 10 11 3 
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Table 10. Cont. 

Sample 

Size 
Scene Combination Order in Bole Scene Combination Order in Manas 

60% 

7 10 1 5 8 3 2 11 6 9 4 6 9 1 5 4 7 8 10 11 3 2 

9 2 1 8 3 5 11 6 4 10 7 6 9 5 1 4 7 8 10 3 11 2 

9 2 11 1 8 3 5 6 7 10 4 6 9 1 4 7 5 8 10 11 2 3 

9 2 8 1 3 5 6 11 4 10 7 6 9 1 4 7 5 8 10 11 2 3 

9 2 1 8 3 5 11 6 7 10 4 6 9 1 5 4 7 8 3 10 11 2 

50% 

9 2 11 1 8 3 5 6 10 4 7 6 9 1 4 7 5 8 10 3 2 11 

9 2 10 8 3 1 5 11 6 7 4 6 9 1 4 7 2 8 10 5 3 11 

9 2 8 1 3 5 6 11 4 7 10 6 9 5 1 4 7 2 8 10 11 3 

9 2 11 3 1 8 5 6 7 10 4 6 9 1 5 4 7 11 10 2 8 3 

9 2 11 1 8 3 5 6 4 10 7 6 9 1 7 5 4 8 11 10 2 3 

40% 

9 2 1 8 3 5 11 6 10 7 4 6 9 1 4 7 8 2 10 11 5 3 

9 2 8 1 5 11 3 6 7 4 10 6 9 1 5 7 8 4 10 2 11 3 

9 2 11 3 8 1 5 10 4 6 7 6 9 1 5 7 4 8 2 10 3 11 

7 10 1 8 5 3 2 11 4 6 9 6 8 1 9 7 5 4 3 10 2 11 

9 2 8 3 10 5 1 11 6 7 4 6 9 1 4 7 10 5 8 11 3 2 

30% 

7 10 8 1 3 4 5 9 2 11 6 6 9 5 1 4 7 8 11 10 2 3 

9 2 1 8 3 5 11 6 7 4 10 6 9 5 4 1 7 8 10 2 11 3 

9 2 11 1 8 3 5 10 6 7 4 6 9 1 5 4 7 8 2 10 3 11 

9 2 11 1 8 3 5 4 6 7 10 6 8 1 7 5 9 4 2 10 3 11 

9 2 1 6 3 8 5 11 4 10 7 6 9 1 5 4 2 7 8 10 3 11 

20% 

9 2 1 8 3 11 6 7 4 5 10 5 9 1 7 8 6 11 2 3 4 10 

9 2 3 10 1 7 5 6 11 4 8 6 9 1 4 7 8 10 2 5 3 11 

9 2 1 8 3 5 6 7 11 4 10 6 9 4 5 1 7 8 10 11 2 3 

7 10 8 1 3 2 5 9 4 11 6 6 8 1 7 5 9 4 10 11 3 2 

7 10 1 8 3 2 11 4 6 5 9 6 9 10 11 1 4 7 2 8 3 5 

10% 

7 2 8 1 9 3 4 6 5 10 11 6 9 1 11 2 3 4 5 7 8 10 

8 5 1 3 10 6 11 4 9 2 7 6 9 1 5 3 4 7 2 8 10 11 

7 2 10 8 1 5 3 4 6 9 11 6 9 4 7 3 5 1 2 8 10 11 

9 2 1 11 6 8 3 4 7 5 10 5 8 7 4 2 1 3 6 9 10 11 

9 11 7 1 5 3 2 6 4 8 10 6 9 1 4 2 3 5 7 8 10 11 

5. Conclusions 

In this study, we evaluated the radiometric similarity between Landsat-5 TM and HJ-1 CCD data 

and estimated the potential of time series merged from two sensors for crop classification in the 

Chinese counties of Bole and Manas. Our main conclusions are as follows. 

(1) Landsat-5 TM and HJ-1 CCD images have similar NDVI and radiometric performances in 

multi-spectral bands. Therefore, missing Landsat-5 TM data can be replaced by HJ-1 CCD 

data, and we were able to obtain time series at 30-m spatial and high temporal resolution by 

merging Landsat-5 TM and HJ-1 CCD data. 

(2) In agreement with previous research, time series in optimal temporal windows can achieve high 

classification accuracies, and additional images did not significantly increase separability and 

overall accuracy. Moreover, data, classes and samples influence the selected temporal periods. 
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As for data, the merged time series have a higher temporal resolution and a higher likelihood of 

containing images in the optimal temporal windows. Therefore, optimal temporal periods 

selected from merged time series have slightly higher separable levels than those selected from 

single-sensor time series. In addition, different crop types affect the optimal temporal windows 

because the optimal temporal periods used for differentiating between different crops varied. 

Normally, the same optimal time periods will be selected when using different training 

samples. However, if the training sample size is too small (i.e., less than 300), untypical 

samples will lead to variances of the scene combination order. 

Using merged time series for accurate crop classification is especially promising for large regions, 

because multi-sensors increase the possibility of acquiring time series at medium spatial resolution 

(about 30 m) with high temporal resolution. Additionally, accurate crop distribution maps can 

contribute to determining regional water requirements for irrigation [36,37]. As more data at medium 

spatial resolution, such as Gaofen (GF-1) with a 16-m spatial resolution [15], become available, we 

will continue to study merged data from additional sensors. 
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