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With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to 
other uses. To protect wetlands, accurate distribution maps are needed. However, because of the dramatic diversity of wetlands 
and difficulties in field work, wetland mapping on a large spatial scale is very difficult to do. Until recently there were only a 
few high resolution global wetland distribution datasets developed for wetland protection and restoration. In this paper, we 
used hydrologic and climatic variables in combination with Compound Topographic Index (CTI) data in modeling the average 
annual water table depth at 30 arc-second grids over the continental areas of the world except for Antarctica. The water table 
depth data were modeled without considering influences of anthropogenic activities. We adopted a relationship between poten-
tial wetland distribution and water table depth to develop the global wetland suitability distribution dataset. The modeling re-
sults showed that the total area of global wetland reached 3.316×107 km2. Remote-sensing-based validation based on a compi-
lation of wetland areas from multiple sources indicates that the overall accuracy of our product is 83.7%. This result can be 
used as the basis for mapping the actual global wetland distribution. Because the modeling process did not account for the im-
pact of anthropogenic water management such as irrigation and reservoir construction over suitable wetland areas, our result 
represents the upper bound of wetland areas when compared with some other global wetland datasets. Our method requires 
relatively fewer datasets and has a higher accuracy than a recently developed global wetland dataset. 
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Wetlands provide important ecosystem and economic ser-
vices, including water quality improvement, soil conserva-
tion, carbon sequestration, biodiversity support, underground 
water stabilization, and flood abatement (Zedler and Kercher, 
2005). With intensifying anthropogenic activities, almost 
half of the wetlands have been lost (OECD, 1996). An ac-
curate wetland distribution map is the basis for wetland 

protection. In the middle 1990s, a wetland survey of 74% of 
continental United States and 24% of Alaska has been com-
pleted (Wilen and Bates, 1995). From data acquired with 
Landsat Multispectral Scanner (MSS), Thematic Mapper 
(TM), and Enhanced Thematic Mapper Plus (ETM+) and 
data from China Brazil Earth Resource Satellite, wetland 
maps covering the entire China have been produced be-
tween 1978 and 2008 (1978, 1990, 2000, and 2008) followed 
by change analysis and assessment of protection efficacy of 
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Chinese protected wetland areas (Gong et al., 2010; Niu et 
al., 2009; Niu et al., 2012; Zheng et al., 2012). Meanwhile 
wetland dynamics and vegetation distribution over areas 
with abundant wetland resources like the Poyang Lake have 
been extensively studied (Dronova et al., 2011; Hui et al., 
2008; Ji et al., 2007). Due to logistic difficulties in field 
works over wetland areas, large area wetland mapping is 
dependent primarily on remotely sensed images. 

There are several global land cover products explicitly 
containing wetland categories. These include the IGBP- 
DISCover developed by U.S. Geological Survey (USGS) 
(Loveland et al., 2000), MOD12Q1 V004 Land Cover Data 
product developed by Boston University from Moderate 
Resolution Imaging Spectroradiometer (MODIS) (Friedl et 
al., 2002), GLC2000 developed by European Commission 
Joint Research Center (Bartholomé and Belward, 2005), 
the Global Land Cover by National Mapping Organizations 
(GLCNMO) developed by Japanese International Steering 
Committee for Global Mapping (Tateishi et al., 2011), and 
the Finer Resolution Observation and Monitoring of Global 
Land Cover (FROM GLC) developed by Tsinghua Univer-
sity with Landsat TM/ETM+ data (Gong et al., 2013). In 
addition, a comprehensive 1-km Global Lakes and Wetlands 
Database (GLWD) was built based on multiple wetland 
datasets (Lehner and Döll, 2004). However, all of these da-
tasets were developed from different data sources with dif-
ferent classification schemes. There were extensive spatial 
disagreements on wetland distribution among these datasets. 
Particularly, a recent comparison of water related land cover 
types showed that wetland was the land cover type with the 
lowest agreement (Nakaegawa, 2012). Moreover, given the 
high seasonality and annual variation in wetland dynamics 
and limited availability in satellite data acquisition, wetland 
mapping based on remotely sensed data is still facing with 
great uncertainty. 

The increasing recognition of the important role wetlands 
play in global water and carbon cycling led to more and 
more land surface model (LSM) development researchers to 
incorporate water and carbon processes in wetlands into 
their model schemes. A recent project of Wetland and Wet-
land CH4 Intercomparison of Models Project (WETCHIMP), 
aiming at investigating our present ability to simulate large- 
scale wetland characteristics and corresponding CH4 emis-
sions, compared 10 models, and eight of them ran at global 
scale. The result showed that there were extensive disa-
greements on wetland extent in both space and time. The 
wetland modeling results ranged from 2.7×106 to 8.17×107 

km2 (Melton et al., 2012). The practical value of these wet-
land datasets was also limited because of the coarse resolu-
tion and lack of global validation. 

In this paper, we employed global Compound Topo-
graphic Index (CTI) dataset and the relation between wet-
land and water table depth to derive the suitability distribu-
tion of global wetlands. Considering the fact that coastal 
wetlands are vulnerable to the influence of tide and its unu-

sual hydrological characteristics, we only focused on inland 
wetlands. In a previous research, a sub-grid run-off parame-
terization scheme had been proposed based on TOPMODEL 
which used CTI to represent the status of local water storage 
(expressed as deficit or saturation) (Habets and Saulnier, 
2001). This parameterization scheme was then coupled with 
land surface models ISAB and ORCHIDEE, respectively, 
leading to an improvement in the modeling of the propor-
tion of saturation area in each sub-grid (Decharme and 
Douville, 2006; Decharme and Douville, 2007; Ringeval et 
al., 2012). These methods offered a reference for us to con-
struct a relation between water table depth and CTI, but the 
scale used in the earlier researches was still too coarse for 
wetland mapping. We used CTI derived from a higher res-
olution topography dataset with a one-layer water balance 
model. Then the average water table depth at 5 min resolu-
tion attained with hydrological model was downscaled to 30 
arc-second by using CTI. Finally, we characterized the 
suitability distribution of global land surface wetland with-
out accounting for the impact of human activities by select-
ing appropriate thresholds for the downscaled water table 
depth. 

1  Global wetland suitability areas modeling 

The modeling process was divided into two parts: (1) ob-
taining soil water content with a water balance model; and 
(2) determining wetland suitability areas based on water 
table depth. Required data include CTI derived from global 
digital elevation model (DEM), climatic data used to drive 
the water balance model, and wetland/no wetland distribu-
tion data for parameter calibration. 

1.1  Datasets 

From 60°S to 60°N, we used 1 km flow accumulation data 
HydroSHEDS (http://hydrosheds.cr.usgs.gov/) from USGS 
to calculate CTI based on eq. (1). The flow accumulation 
data HydroSHEDS were produced from Shuttle Radar 
Topographic Mission (SRTM) DEM data through some 
post-processing to eliminate dams and false sinks and re-
duce errors caused by interpolation. For areas above 60°N, 
the CTI was obtained by applying a function (CTI.aml) 
compiled by USDA Forest Service Rocky Mountain Re-
search Station to the 1 km GTOP30 elevation dataset. The 
global CTI was produced by combining the two datasets 
and then transformed it to 30 arc-second resolution. 

 CTI ln ,
tan

SA


 

  
 

 (1) 

where AS is the flow accumulation and  is the slope in ra-
dians. 

The datasets used to drive the water balance model are 



 Zhu P, et al.   Sci China Earth Sci   October (2014) Vol.57 No.10 2285 

 

the average monthly climate data at 5min resolution during 
1950–2000. These datasets were obtained from WorldClim 
(http://www.worldclim.org/), including average monthly 
precipitation, average monthly maximum temperature, and 
average monthly minimum temperature. 

To acquire global wetland samples, we collected five 
global land cover products and seven regional land cover 
products for 2000 (Table 1). From Table 1 we can see that 
there is a distinct disagreement in wetland definitions. We 
extracted wetland areas from these land cover products ac-
cording to the wetland definition in Ramsar Convention. 
Wetland definition in Ramsar Convention contains not only 
swamps, estuaries, peat lands, and mangroves but also lakes, 
rivers, alpine meadows, and tundra. Among the five global 
land cover datasets, GLWD was specially oriented to wet-
land and included 12 wetland types, so all of the area was 
classified as wetland. GLC2000 was accomplished based on  
cooperation with various institutes so the wetland definition 
also varied in space. We classified all land cover types in 
accordance with the wetland definition in the Ramsar Con-
vention (Table 1). Land cover types like water bodies, her-
baceous wetlands, wooded wetlands, herbaceous tundra, 
wooded tundra, and mixed tundra in IGBP-DISCover were 
all classified as wetland. In GLCNMO and the MODIS 
product, land cover types that could be regarded as wetland 
only include water bodies and permanent wetlands. Appar-
ently, these datasets are comparable, because they can be 
unified under the framework of wetland definition in Ram-
sar Convention.  

To unify these datasets with different resolutions, all of 

these datasets were resampled to 1 km. In the process of 
resampling from the higher resolution datasets, land cover 
categories were aggregated into 1 km pixels. Only pixels 
whose proportion of wetlands exceeds 80% were catego-
rized as wetland to keep purity of wetland samples. To en-
sure accuracy among wetland samples, we took the inter-
section among different wetland datasets as wetland sam-
ples. Meanwhile, water bodies were eliminated from the 
intersection dataset to adjust for the proportion of water 
samples in wetland samples. Water samples were taken 
from the global water body dataset MODIS Water Mask 
(MWM) that was obtained from http://glcf.umd.edu/data/ 
watermask/. In order to ensure the quality of no wetland 
samples, we took the union of all wetland extents from dif-
ferent datasets and then added a buffer zone of 5 km to get 
the maximum possible extent of wetlands. Random sample 
points of no wetland were extracted with HawthsTools in 
ArcGIS from areas outside the unified and buffered wetland 
areas. Because the area of the intersection and water-elim-      
inated wetland extent was already rather small, we collected 
75000 wetland sample points accounting for approximately 
30% of the total intersected wetland area and collected 
10000 water sample points from the MWM. Nine thousands 
of no wetland points were extracted. To evaluate the quality 
of the wetland samples, 4000 points were randomly drawn 
from the wetland samples. From Google Earth high resolu-
tion images, we located the 4000 samples and checked if 
they are indeed wetlands. Only 67 points could not be con-
firmed as wetland, indicating that the wetland sample has 
high certainty.  

Table 1  Characteristics of the five global land cover datasets and products and seven regional land cover products 

Land cover product Data used 
Data collection 

period 
Classification 

system 
Resolution 

(km) 
Classification 

Global scale 

IGBP-DISCover NOAA-AVHRR image 1992–1993 
IGBP 
(17 classes) 

1 Unsupervised clustering 

BU-MODIS Terra MODIS 2000–2001 
IGBP 
(20 classes) 

1 Supervised decision tree 

GLC2000 SPOT Vegetation 1999–2000 FAO LCCS (23 classes) 1 
Flexible classification  

depending on the institutions 

GLCNMO Terra MODIS 2003 FAO LCCS (23 classes) 1 
Supervised 
classification tree 

GLWD Wetland map, GLCC, DCW DNNE 1992–1993 12 wetland classes 1 – 

Regional scale 

USA National wetlands  
Inventory 

Aerial photography draft map,  
field investigation 

－ Wetland/no wetland 1:144000 
High altitude image in con-

junction with collateral data 
sources and field work 

Canada Circa 2000-Vector 
land cover datasets 

Landsat 1999–2002 Author’s own 30 m Clustering 

China wetland Landsat TM ETM 2000 Author’s own 30 m Manual interpretation 

Europe CORINE Land  
Cover 2000 

Landsat-7 ETM 1999–2001 Author’s own 100 m 
Manual interpretation and  

automated classification 
Amazon basin wetland  
mask 

JERS-1 SAR image data 1995–1996 Wetland/No wetland 100 m 
polygon-based segmentation 

and clustering process 

Australia landcover MODIS 16-day EVI composite 2000–2008 Author’s own 250 m Support vector clustering 

AfriCover TM 2000s FAO LCCS (23 classes) 30 m Manual interpretation 
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The development mechanism of land surface wetland 
varied across different areas. In particular, climatic factors 
determine the way of water provision to land surface wet-
land under different climate conditions. According to dif-
ferent climate systems and wetting mechanisms, wetlands at 
different areas are divided into four types: (1) mostly pre-
cipitation and local runoff-fed, such as bogs and marshland 
which are disconnected from river networks; (2) mostly 
surface water-fed but groundwater-supported, such as coastal 
freshwater wetlands, tropical-subtropical forests and inland 
floodplains; (3) mostly groundwater fed, such as inland 
freshwater wetlands in semi-arid climate areas; and (4) mostly 
frozen ground-supported (Fan and Miguez-Macho, 2011). 
According to these hydrological mechanisms, it is necessary 
to model wetlands in different climate zones with different 
parameters. Freshwater Ecoregions of the World (FEOW) 
(http://www.feow.org/) were used to construct the units 
within each of which model parameters are established. The 
FEOW were developed for freshwater biodiversity conser-
vation. They were produced mainly based on drainage basin 
boundaries. The comparison between this dataset and an-
other global basin dataset, USGS HydroSHEDS, showed a 
good spatial agreement. FEOW contained 426 regions, and 
we selected six bioclimatic variables: annual mean temper-
ature, maximal temperature of warmest month, minimal 
temperature of coldest month, annual precipitation, precipi-
tation of wettest month, and precipitation of driest month 
from WorldClim and calculated the average of these varia-
bles for each region as its feature variables. These feature 
variables were then standardized by subtracting the average 
value and divided by the standard deviation. Finally a k- 
means clustering algorithm was applied to the 426 regions 
using the six feature variables as inputs to generate 15 cli-
matic-basin clusters (Figure 1), which were used as our 
modeling units. The comparison between our climate-basin 
clusters and Köppen Climate Classification System indi-
cates that our clustering results not only can reflect the geo-

graphical distribution of global climatic regions but also can 
distinguish hydrological controls of basins in different wet-
land ecosystems. 

1.2  Modeling the distribution of soil water content 

Our model runs at monthly time interval. With the defi-
ciency of high resolution climatic forcing datasets the cal-
culation of soil water content was based on a simple water 
balance model including the processes of precipitation, 
evapotranspiration, and runoff generation but ignoring the 
processes of vegetation interception, interaction between 
land surface water and underground water (recharge and 
discharge). The soil water content was updated monthly:  

 
d

d

( )
( ) ( ) ( ) ,

W t
P t ET t R t

t
    (2) 

where P(t), ET(t), R(t), and W(t) refer to precipitation, 
evapotranspiration (ET), runoff, and soil water content at 
time t, respectively. The calculated soil water content in eq. 
(2) should be viewed as the average soil water content in a 5 
min grid cell rather than the rigid definition of soil water 
content in pedology. ET was calculated based on the hy-
pothesis that it has a direct proportional relationship with 
the relative soil water content and potential evapotranspira-
tion (PET) (Prentice et al., 1993):  

  std( ) ( ) ,ET t PET t w  (3) 
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.

W t w
w
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where wsat, wwilt, and wstd respectively refer to soil perma-
nent wilting point, soil porosity, and relative soil water con-
tent. The basic soil datasets were obtained from Harmonized 
World Soil Database v1.2 (http://webarchive.iiasa.ac.at/ 
Research/LUC/External-World-soil-database/HTML/). Soil  

 
Figure 1  Fifteen climatic-basin clusters based on bioclimatic variables. 
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permanent wilting point and soil porosity were determined 
using the same parameters in NOAH (National Centers for 
Environmental Prediction Oregon State University Air Force 
Hydrologic Research Lab) to keep consistent with NOAH 
output variables (Ek et al., 2003). The soil parameters are 
listed in Table 2. PET was calculated following Hargreaves 
and Samani (1985).  

To quantify the impact of surface runoff on soil water 
content, we used the following parameterization scheme 
which was expressed as the function of precipitation and 
relative soil water content (Bergstrom, 1995): 

 std( ) ( ) ,R t P t w  (5) 

where  was solved using 0–2 m depth soil water content 
data in NOAH LSM offered by Global Land Data Assimila-
tion System (GLDAS). NOAH LSM is an operational LSM 
coupling physical processes of the soil-vegetation-atmos-     
phere and characterizing the land surface process more ac-
curately than our model, but its coarse spatial resolution 
prevents it from being used in high resolution wetland mod-
eling. Therefore, we got each month’s mean soil water con-
tent by averaging NOAH output soil water content datasets 
for 1950–2000 and then solved parameter  with eqs. (2) 
and (5).  is viewed as a temporally invariable and scale- 
independent parameter reflecting the nature of basins. Fi-
nally, with the solved  our model ran for 30 times to reach 
a steady state and then got the soil water content at 5 min 
resolution. Thirty times were chosen because it produced 
stabilizing soil water content result. Following eq. (4), we 
could calculate the average value of relative soil water con-
tent for 1950–2000, which is shown in Figure 2. 

1.3  Determination of land surface wetland distribution 
based on water table depth  

Under the TOPMODEL assumptions that the surface infiltra-     

Table 2  Soil parameters corresponding to various soil texture class 

Soil texture class Permanent wilting point Soil porosity 

Sand 0.339 0.236 

Loamy sand 0.421 0.383 

Sandy loam 0.434 0.383 

Silt loam 0.476 0.360 

Silt 0.476 0.383 

Loam 0.439 0.329 

Sandy clay loam 0.404 0.314 

Silt clay loam 0.464 0.387 

Clay loam 0.465 0.382 

Sandy clay 0.406 0.338 

Silt clay 0.468 0.404 

Clay 0.468 0.412 

 

tion rate and soil properties are uniform across a basin and 
that subsurface transmissivity has an exponential profile 
with water table depth, the local water table depth wtdi at 
position i within a 5-min grid cell can be expressed as a 
function of the average grid cell water table and grid cell 
topography (Beven and Kirkby, 1979): 

     wtd wtd ( )i iM  (6) 

where wtd  is the mean water table depth (WTD) of the 5 

min grid cell, i is the local CTI index at i,   is the mean 
CTI, and M is a scaling parameter. While eq. (6) is estab-
lished over an entire basin, rather than a grid cell, the 5 min 
grid cells we used are sufficiently large so that the relation-
ship can hold approximately true, i.e., pixels for which a 
significant fraction of their upslope contributing area lies 
outside the cell boundaries make up only a small fraction of 
the grid cell (Bohn et al., 2007).  

 
Figure 2  Average value of relative soil water content for 1950–2000. 



2288 Zhu P, et al.   Sci China Earth Sci   October (2014) Vol.57 No.10 

 

Before acquiring WTD at each point, we must get the 
mean WTD of 5 min grid cell. For peat land area (Hilbert et 
al., 2000), we can use the following equation: 

 
 
PET

ET .
1 wtdc

 (7) 

Then the relation between wstd and wtd can be denoted 
as  

 std

1
,

1 wtd
w

c


 
 (8) 

where c is a parameter to be determined. Finally wtdi can be 
expressed as  

  


  std

std

1
wtd ( ).i i

w
M

cw
 (9) 

The above equation shows that as long as parameters c 
and M are determined, the global WTD at each point can be 
solved. However, it is hard to get accurate values for the 
two parameters globally. Since the result we need is wetland 
distribution rather than a global WTD map, we proposed the 
following method to determine the global land surface wet-
land distribution by using an optimal threshold that distin-
guishes the wetland from no wetland area. 

The wetland and no wetland sample points were used as 
binary variable (B) to calibrate parameters c and M (when it 
is wetland, B=1; otherwise B=0). We introduced a sigmoid-

al function, wtd(wtd ) 1 1 e i

if   , which could map wtdi 

into 0–1 to relate B with wtdi. min was used as the solving 
condition where  

    2( (wtd )) .iB f  (10) 

Parameters c and M were individually solved for 15 
global climatic-basin regions, given that values of these 
parameters varied across different climate zones (Table 3). 
To quantify the optimal WTD thresholds to distinguish 
wetland suitability areas, wetland and no wetland samples 
were used as validation data to determine the accuracy with 
different WTD as thresholds. Finally, the corresponding 
WTDs with the highest accuracy achieved were chosen as 
the optimal thresholds to distinguish wetland from no wet-
land area (Table 3). 

2  Results and discussion 

Based on water cycling process and the relation between 
WTD and wetlands, the global land surface wetland suita-
bility map was produced (Figure 3). A recent study pro-
duced a global pattern of WTD through numerically solving 
Darcy’s law and Richards equation (Fan et al., 2013). In 
their study, 0.25 m was used as the threshold to distinguish 
wetland from no wetland areas. Since their study did not 
account for human activities either, their result can also be  

Table 3  c, M and optimal WTD thresholds for different climatic-basin 
regions   

Climatic-basin regions c M Optimal WTD thresholds (m) 

1 105.26 0.494 0.435 

2 34.25 0.357 0.237 

3 8.83 0.322 0.359 

4 178.57 0.39 0.777 

5 34.96 0.564 0.213 

6 2.01 0.505 0.368 

7 1.82 0.257 0.426 

8 9.95 0.483 0.468 

9 0.89 0.262 0.040 

10 1.50 0.626 0.447 

11 2.27 0.351 0.116 

12 0.51 0.644 0.223 

13 3.20 0.636 0.549 

14 0.92 0.465 0.205 

15 4.85 0.433 1.000 

 

viewed as a wetland suitability map (Figure 4). The com-
parison between these two global wetland suitability maps 
exhibited a good spatial agreement. Our modeling result 
indicates that the total area of global land surface wetland is 
3.316×107 km2, and Fan’s result is 3.376×107 km2. The two 
results were aggregated to 5 min resolution to get the pro-
portion of wetland at each grid cell. The difference between 
the two maps indicated that the major area of disagreement 
was located in the Northern Hemisphere especially at high 
latitudes such as northern Canada, West Siberia, and North-
east China (Figure 5). The differences are caused by the 
different models employed and the different topographical 
data used at greater than 60°N.  

Wetland and no wetland samples greater than 1 km were 
compiled from the validation dataset of our global land 
cover mapping project (Gong et al., 2013). Since the number 
of wetland samples selected from this datasets was much 
smaller than that of no wetland points, internationally im-
portant wetland points from Ramsar Convention were added 
to form a validation datasets consisting of 8112 wetland 
samples and 12358 no wetland samples. This validation 
dataset was used to assess the accuracy of our modeling 
result, Fan’s result, and the five global land cover mapping 
based on remotely sensed images. The confusion matrix 
(Table 4) indicates that our result has produced a higher 
accuracy in both Producer’s Accuracy (PA) and User’s Ac-
curacy (UA) than did Fan’s result. The Overall Accuracy 
(OA) of our result is 83.7%, which is the highest among all 
datasets. This indicates our result holds a great potential to 
serve as a guide to constructing global wetland databases. 
Latitudinal distributions of area fraction for the seven global 
wetland maps (our result, Fan’s result, and five remote sens-
ing based wetland mapping) show a consistent spatial pattern 
(Figure 6). In areas largely impacted by human activities 
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(about 40°S–55°N), model-based results have a larger wet-
land area fraction than the other five remote-sensing-based 
wetland map results and in areas less impacted by human 
activities (about above 55°N), model-based wetland area 
fractions are in the middle of this range. There are two re-
gions with plentiful wetlands along the global latitudinal 
distribution: regions along the equator and regions along the 
60°N. 

An area comparison among the seven global wetland re-
sults shows that our result contains similar wetland area to 
Fan’s modeling result (Table 4) but both are greater than the 
areas in the five remote sensing based maps. The wetland 
areas in BU-MODIS and GLCNMO are much smaller than 
the areas in the modeled wetlands. The main reasons are: (1) 
BU-MODIS and GLCNMO wetland extents only include 
permanent wetland and water bodies; although the other 
three wetland extents include floodplain, and the maximum 
extent of short-term inundation is hard to capture from a 
single date remotely sensed image. This is especially true 
for highly varying seasonal lakes like the Poyang Lake and 
the ratio between the maximum and minimum inundation 
areas could be greater than three (Sun et al., 2014). Thus, 
wetland maps derived from a single date remote sensing 
images tend to underestimate wetland areas. However, wet-
land areas determined by modeling topographic and hydro-
logic processes usually include most areas suitable to wet-

land development. Therefore, they are likely to overestimate 
wetland areas. (2) Neither of the two model-derived results 
accounted for impact of anthropogenic water management 
such as irrigation and reservoir development on wetlands. 
We did not include anthropogenic water management in our 
study because we do not have the related human activities 
data. Lacking such data is also the main difficulties in large 
scale hydrological modeling (Pokhrel et al., 2012; Wood et 
al., 2011). Moreover, a larger wetland suitability area could 
serve as a guide to more accurate wetland mapping using 
remote sensing because areas outside the wetland suitability 
mask could be ignored to reduce errors caused by spectral 
confusion. 

For coastal wetlands, there is a large variation in width of 
wetland zone along the coastal line as determined by vari-
ous topographic structures and subtle surface relief. Such 
variations cannot be fully captured in coarse resolution 
DEM datasets as the ones we used. Therefore, we concen-
trated our research on land surface wetland suitability map-
ping to reduce uncertainty. The model used here is relatively 
simple as compared to those used by Fan and WETCHIMP 
but it showed a better performance in mapping suitable 
wetlands in accuracy based on our validation. We attribute 
the better performance of our method partially to the adop-
tion of climatic-basin units within which unique model pa-
rameters are applied. Another reason is that it incorporated  

Table 4  Accuracy and area comparison across seven global wetland results 

This result Wetland No wetland PA (%) UA (%) Overall accuracy (%) Wetland area (106 km2) 

Wetland 5915 1830 80.7 76.4 
83.7 33.16 

No wetland 1414 10779 85.5 88.4 

Fan’s result 

Wetland 5150 2632 75.2 66.2 
78.3 33.76 

No wetland 1702 10516 80.0 86.1 

IGBP-DISCover 

Wetland 4678 5879 86.9 44.3 
71.3 32.47 

No wetland 702 11655 66.5 94.3 

GLWD 

Wetland 5457 5100 85.8 51.7 
73.8 25.63 

No wetland 901 11456 69.2 92.7 

GLC2000 

Wetland 5158 5399 83.3 48.9 
71.9 26.86 

No wetland 1035 11322 67.7 91.6 

GLCNMO 

Wetland 3706 6851 95.0 35.1 
69.3 6.40 

No wetland 196 12161 64.0 98.4 

BU-MODIS 

Wetland 4563 5994 97.1 43.2 
73.2 7.81 

No wetland 137 12220 67.1 98.9 
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Figure 3  Global wetland suitability modeling result in this study. 

 

Figure 4  Global wetland modeling result derived from Fan’s result (2013). 

 

Figure 5  The difference of wetland proportion between our modeling result and Fan’s at each 5 min grid cell.  
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Figure 6  Latitudinal distribution of seven global wetland area fraction.  

the soil water content datasets from NOAH, which have 
demonstrated good quality in other research (Rodell et al., 
2007; Syed et al., 2008; Zhang et al., 2008). Our result also 
proves that exploring and modeling global wetland at high 
resolution from a water cycling perspective is feasible. 
Since we did not account for the impact of human-induced 
disturbance to the natural water cycling, our result overes-
timated the area of global wetland. In the future we expect 
that more human impact factors will be represented and 
more hydrological processes will be included into land sur-
face models to produce more accurate global wetland dis-
tribution data. 
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