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Abstract—This study mainly discusses atmospheric water vapor
retrieval over cloud cover area on land with the help of a newly
developed surface emissivity parameter estimation method in mi-
crowave bands. In the retrieval method, the atmospheric water
vapor sensitivity parameter—ratio of brightness temperature
polarization difference at frequencies 18.7 and 23.8 GHz
( )—is used to retrieve water vapor, and the
surface emissivity parameter—ratio of surface emissivity polariza-
tion difference at frequencies 18.7 and 23.8 GHz ( " " )
that corresponds to —is a key parameter that
affects the final precision of retrieved atmosphere water vapor. In
order to estimate " " in cloudy condition, we first
estimated the value of " " in clear condition using
Advanced Microwave Scanning Radiometer for EOS (AMSR-E)
brightness temperature and relatedMODIS atmospheric products.
At the same time, it was found that gradient information derived
separately from and " " has very
good correlationwith each other. Based on this good correlation, the
" " in cloudy conditionwas estimated using correspond-

ing and adjacent 8 days " " in clear
condition. With the estimated " " , we retrieved atmo-
spheric column water vapor using lookup table method in cloudy
condition over land. As a validation source data, the SuomiNet
GPS-retrieved precipitable water (PW) vapor is used to validate the
retrieved water vapor in this study. According to validation, the
correlation coefficient of the two is 0.94 and the root-mean-square-
error (RMSE) is 4.85 mm. It is a great improvement in water vapor
retrieval using microwave in cloud cover area on land.

Index Terms—Advanced Microwave Scanning Radiometer for
EOS (AMSR-E), microwave, surface emissivity, water vapor.

I. INTRODUCTION

A TMOSPHERICwater vapor plays an important role in the
Earth system. It contributes to the whole Earth in several

ways. First, atmospheric water vapor is a key parameter in
hydrologic cycle. Water vapor evaporates from land or sea
surface, then condenses to form clouds and blown to other places
by wind, finally falling to the Earth surface in the form of
precipitation [1]. Second, atmospheric water vapor is an impor-
tant energy carrier between surface and atmosphere. It absorbs

heat from the Sun in the evaporation process, and put the heat into
the air when condensing into clouds or precipitation. These two
processes are important ways to transfer energy from the Earth
surface to the air [1]. Third, atmospheric water vapor is also an
important kind of greenhouse gases in the atmosphere besides
carbon dioxide and methane. It absorbs long wave radiation
emitted from the Earth surface and heats the air. Without these
greenhouse gases, the Earth surface will become very cold [1].
So, it is very important to know the temporal and spatial
distributions of water vapor all over the globe.

Remote sensing provides an effective way to retrieve atmo-
spheric water vapor in large area. Currently, there are mainly two
types of remote sensing data that are used to retrieve atmospheric
water vapor. One is optical remote sensing data. The other is
microwave data.

Near infrared data and thermal infrared data are mainly used
to retrieve water vapor in optical remote sensing. The algorithms
using these two types of data to retrieve water vapor are
currently in operation. In near infrared, the ratio of water vapor
absorbing channels centered near 0.905, 0.936, and
with atmosphericwindowchannels at 0.865 and are used
to retrieve water vapor; typical errors in the derived water vapor
values are in the range between 5% and 10% [2], [3]. In thermal
infrared, single channel [4] and two adjacent channels in the
infrared split-window region near [5]–[8] are usually
used to retrieve water vapor. These two types of algorithm in
optical remote sensing can provide atmospheric column water
vapor with high precision in clear condition. When clouds are
present, the algorithm using near infrared remote sensing data can
only provide water vapor information on the Sun–cloud–sensor
path over optically thick cloud or water vapor information above
and within thin clouds. They are not able to provide water vapor
information between cloud and the Earth surface because of its
short wavelength. As a complement of optical remote sensing
of atmospheric water vapor, passive microwave has the ability
to provide the way to retrieve water vapor in cloudy condition due
to its long wavelength compared with the size of cloud particles.

There are various atmospheric water vapor retrieval algo-
rithms using passive microwave. Generally, these algorithms
can be categorized into four main groups: statistical algorithms,
semi-statistical algorithms, physical algorithms, and neural net-
work algorithms. The statistical algorithms retrieve atmospheric
water vapor using the relationship derived between ground-
based observed data and one or multi-bands of space-based
passive microwave radiometer data [9]–[11]. The advantage of
such algorithms is simple and easy to achieve. However, the
relationship used to retrieve water vapor is greatly affected by
the quality of selected data. When applied in global scale, the
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algorithmsmay introduce great errors in local area due to the lack
of physical constraints. Comparedwith statistical algorithms, the
semi-statistical algorithms introduce constraints of radiative
transfer model when building the regression relationship of
atmospheric water vapor and brightness temperature from mi-
crowave radiometer [12]–[14]. This can greatly reduce errors in
local regions for global scale algorithms. The disadvantage of the
semi-statistical algorithms is that some environmental variables
may be improperly introduced or ignored in the retrieval and
cause errors in the retrieved water vapor. The third group is
physical algorithms that rely solely on radiative transfer equation
in the retrieval [15], [16]. Compared to the aforementioned two
groups of algorithms, the physical algorithms have definite
physical meaning. However, complexity of radiative transfer
equation makes it difficult to be widely used. Simplification and
assumption of the radiative transfer equation in actual retrieval
limit the ability of physical algorithms. The fourth group is neural
network algorithms. Here, we separate it from statistical algo-
rithms. The reason is the way it is different from common
statistical algorithms in building relationship between retrieved
variables and observed variables. Neural network techniques
have already proved very successful in the developments of
computationally efficient inversionmethods for satellite data and
for geophysical applications [17], [18]. They are well adapted to
solve nonlinear problems and are especially designed to capital-
ize on the inherent statistical relationships among the retrieved
parameters [17]. The problem of neural network is that it is not
able to explain its reasoning process and theoretical basis and it
cannot work very well when the data are not sufficiently
provided.

Most of these algorithms using microwave radiation work
very well over ocean area. However, only a few of these studies
have put efforts on the retrieval of atmosphere parameters from
microwave observations over land. The main reason for this
situation is that the ocean surface has a low microwave emissiv-
ity (about 0.5) that produces good contrast of atmospheric
phenomena against a low-brightness temperature background;
the land surface emissivity is usually close to unity, making
atmospheric features much more difficult to identify against a
higher brightness temperature background [17]. In [19], a new
method was proposed to retrieve cloud liquid water over land
using Special Sensor Microwave Imager (SSM/I), and [20]
improved this algorithm with a normalized polarization differ-
ence parameter. They estimated the surface emissivity with the
help of collocated infrared measurement on GOES-7 in clear
condition. For cloudy condition, they estimated the surface
emissivity using an average of adjacent 7-day period clear-
conditioned surface emissivity. It may introduce great error to
the estimated surface emissivity in cloudy condition when there
is rain precipitation event during the adjacent 7-day period. In
[12], a new method was proposed to estimate water vapor using
the observation from the Advanced Microwave Scanning Radi-
ometer for EOS (AMSR-E) satellite instrument. The method
retrieved atmosphericwater vapor using awater vapor sensitivity
parameter—the ratio of the AMSR-E polarization-difference
signals at 18.7 and 23.8 GHz ( ). However,
the problem is the surface emissivity parameter—the ratio of
surface emissivity polarization difference at 18.7 and 23.8 GHz

( ) was assumed to 1 in the retrieval. Actually,
according to our calculation, the changes over
seasons and different surface types. The assumption may intro-
duce error to the retrieved atmospheric water vapor.

In this study, we propose a newmethod to estimate the surface
emissivity parameter— in cloudy condition, and
then it is used in the retrieval of atmospheric water vapor
according to the sensitivity parameter— with
the help of a lookup table technology. The lookup table is build
by a 1-Dimensional Microwave Radiative Transfer Model
(1-DMWRTM) [21], [22]. As a validation, SuomiNet GPS
observed water vapor data [23] are used to validate to the
retrieved water vapor. Section II describes the data used in
the retrieval algorithm. Section III shows the basic theory of
the algorithm and the method of estimating surface emissivity
parameter in cloudy condition. Section IV is the validation part of
this algorithm and Section V concludes this study.

II. DATA USED IN RETRIEVAL

In the retrieval, four types of data are used. These include
AMSR-E brightness temperature, MODIS products (MODIS
surface temperature product, MYD11; MODIS cloud mask
product, MYD35; MODIS water vapor product, MYD05; and
MODIS cloud product, MYD06), radiosonde observation, and
SuomiNet GPS observation.

The AMSR-E is a 12 channel, 6 frequency total power passive
microwave radiometer system onboard the AQUA satellite. It
measures brightness temperatures at frequencies 6.925, 10.65,
18.7, 23.8, 36.5, and 89.0 GHz. Vertically and horizontally
polarized measurements are taken at all channels [24]. Only
brightness temperature at frequencies 18.7 and 23.8 GHz is used
for retrieval in this study. All these brightness temperatures are
corrected by Earth incidence angle in order to retrieve the vertical
column atmospheric water vapor or PW.

MODIS is another sensor onboard AQUA. As both AMSR-E
and MODIS are onboard the same satellite, data from these two
sensors can be easilymatched in spatial and temporal scale. In the
retrieval algorithm of this paper, MODIS water vapor and
surface temperature product in clear sky are used to estimate

; MODIS cloud mask product is mainly used to
identify cloud existence, and MODIS cloud product is used for
cloud effect correction in the retrieval.

The radiosonde observationswere derived fromU.S. Southern
Great Plains, in 2007. Four types of profiles are included in the
observations: height, relative humidity, temperature, and pres-
sure, which are used to build lookup table used to calculate
emissivity and retrieve water vapor.

The SuomiNet GPS observations are used as validation data
for the retrieved water vapor. SuomiNet is an international
network of GPS receivers. The goal of SuomiNet is to make
large amounts of spatially and temporally dense GPS-sensed
PW vapor data widely available in real time, for academic
research and education [23]. PW from GPS is calculated as the
product of the zenith delay and a conversion factor [25].
The accuracy of GPS-sensed PW by this method is better than
2 mm [23], [25].
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III. ALGORITHM DESCRIPTION

The algorithm theoretical basis is derived from the integrated
radiative transfer equation, which is detailed in Section III-A. It
explains why we use to retrieve water vapor.
According to the description in Section III-A, the surface emis-
sivity parameter is a key surface boundary pa-
rameter in the retrieval, and cloud liquid water also makes
contribution to the value of besides water
vapor. These two parameters are discussed in Sections III-B and
III-C, respectively. In the end, Section III-D gives an overall
description of the water vapor retrieval algorithm.

A. Basic Theory

The theory basis for water vapor retrieval in this study is
atmospheric radiative transfer equation. Part of the description of
the theory basis is also discussed in the previous study [26]. The
integrated radiative transfer equation for a nonscattering, plane-
parallel atmosphere with a non-blackbody surface boundary
condition can be expressed as follows [19], [27]:

where is the upward brightness temperature observed by
the satellite at pressure , at the frequency , represents
polarization state vertical ( ) or horizontal ( ); is the surface
emissivity at frequency and polarization state ; is the
surface temperature, the subscript denotes surface value;
is the atmospheric transmittance for a layer between pressure
level and ; and is cosmic background
temperature.

The polarization difference of brightness temperature at a
frequency can be calculated according to (1)

where and are brightness temperature at frequency
for vertical and horizontal polarization, respectively, and
are surface emissivity at frequency for vertical and horizontal
polarization, respectively.

For microwave frequencies between 18 and 89 GHz, bright-
ness temperature received by sensor can be affected by water
vapor, cloud liquid water, and rain in the atmosphere. In order to
retrieve water vapor in the atmosphere, proper frequency or
frequencies combination should be selected to suppress other
information and highlight the information of water vapor. Ac-
cording to former research, the ratio of polarization difference of
brightness temperature at frequencies 18.7 and 23.8 GHz

( ) is sensitive to water vapor and less sensitive
to other information in atmosphere [12], [14]. So, (3) can be
deduced from (2)

where ; is a function of surface tem-
perature and water vapor.

According to (3), from the measurement of
using AMSR-E brightness temperature, if and
surface temperature are known, then water vapor can be
estimated. is estimated using (4) and the precision is 4.5 K
[28]

where is AMSR-E vertical polarization brightness tem-
perature data at frequency 36.5 GHz. However, due to applica-
tion limitation, (4) is not suitable for area with low surface
temperature. For these areas, the surface temperature is estimated
using average value of adjacent 7 days surface temperature
retrieved from MODIS in clear condition. An error of 10 K in

would produce an atmospheric water vapor retrieval error of
only 0.07 mm [12]. It is acceptable for the estimation of surface
temperature with a reasonable accuracy.

In (3), is an important parameter in the retrieval
of water vapor. In pioneer research, is usually set
as a constant for the sake of simplification [12], [14]. However,

changes with different seasons and surface types
according to our analysis in Fig. 1. It may introduce great errors if
the variation in is ignored. The detail of estimation
of and the analysis of its spatial and temporal
variation are mainly discussed in Section III-B.

B. Surface Parameter Estimation

In water vapor retrieval, is an important surface
parameter. In this section, this surface parameter in clear condi-
tion isfirst estimated usingAMSR-Ebrightness data andMODIS
water vapor and surface temperature product, and then,

in cloudy condition is estimated using the adja-
cent 8 days data of in clear condition. The theory
to estimate these surface parameters in clear condition is based on
(3). According to (3), if , , and water vapor
are known, can be estimated. Prior to the estima-
tion, a sensitivity analysis is performed using 1-DMWRTM. The
data used in the analysis are atmospheric profiles from radio-
sonde observations derived from U.S. Southern Great Plains, in
2007. Fig. 1 shows the sensitivity of the simulation. Fig. 1(a)
shows the sensitivity of to at
different water vapor contents, when surface temperature equals
300K.According to Fig. 1, the slope increases as thewater vapor
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content getting larger and larger. Fig. 1(b) shows the sensitivity of
to at different surface tempera-

tures, when water vapor content is 7.18 cm. Although the effect
of surface temperature to slope in Fig. 1 is not as much as that of
the water vapor, the effect of surface temperature should not be
ignored, the reason is that a variation of 10 K in surface tempera-
ture would produce amaximum change of 0.05 in .
On the whole, water vapor and surface temperature are the
key parameters to estimate in clear condition.

Data used to estimate in clear condition include
atmosphere profiles from radiosonde observation, AMSR-E
brightness temperatures, and their corresponding MODIS water
vapor and surface temperature products (MYD05 and MYD11).
As a preprocess, the AMSR-E brightness temperature and
MODIS products are re-projected into grid image,
both types of the data match very well in temporal and spatial
scale, because they are onboard in the same satellite AQUA.

The method used in estimating surface parameters is a lookup
table technology. The lookup table is built using 1-DMWRTM,
and it contains four fields: surface temperature, water vapor
content, , and . Based on the
lookup table, can be estimated using surface
temperature, water vapor, and on each grid
in clear condition.

As an analysis of temporal variability, the estimated
in clear condition using lookup table method is

used in time series analysis. Fig. 2 shows a time series plots of
on 12 land surface types in USA; the abscissa

values in the plots are day numbers in a year and the ordinate

Fig. 1. (a) Sensitivity of to at different water
vapor contents, when surface temperature equals to 300 K. (b) Sensitivity of

to at different surface temperatures, when
atmospheric water vapor content is 7.18 cm.

Fig. 2. Time series of mean of different land surface types in USA
in a year.
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values are . According to these plots, the value of
has a significant change over seasons on some

kinds of land surface type, such as evergreen needle leaf forest,
open shrub lands, woody savannas, grasslands, and croplands.
While the value doesnot have significant seasonal changeon some
other kinds of land surface type, such as, evergreen broadleaf
forest, mixed forest, permanent wetlands, and urban and build-up
area. From the view of average value of at different
surface types, is usually greater than 1 in the region
of open shrublands, grasslands, and barren or sparsely vegetated
areas. The reason for this phenomenon is that the land surface
structure is relatively simple or “smooth,” and the brightness
temperature polarization difference decreases with increasing
frequency at these land surface types. On the contrary,

is usually smaller than 1 in the regions such as
evergreen needle-leaf forest, evergreen broadleaf forest,
and deciduous broadleaf forest. The structure of these land
surfaces is very complex due to the existence of trees or buildings.
It obscures the signal of lower bare surface transferring directly to
the space-based radiometer and the frequency dependence of
polarization difference is weakened. The theory about how the
signal is affected by trees and building is outside the scope of this
study, and it needs to be further studied in the future.

As shown in Fig. 2, has significant change over
seasons and different surface types. The problem is that how
much will affect the precision of the retrieved
atmospheric water vapor. A simulation was performed using
1-DMWRTM and the outcome is shown in Fig. 3. This figure
shows the sensitivity of water vapor to at a given
surface temperature and ; according to this
figure, the retrieved water vapor decreases with the increasing

, an error of 0.1 of may cause an
average error of 7mmof retrievedwater vapor.As the valid range
of is between 0.6 and 1.5 according to statistics, if

is set to a constant in the retrieval ofwater vapor, it
may result in significant error. So, it is necessary to estimate

on a pixel-by-pixel basis.
It is easy to estimate in clear condition; how-

ever, it is difficult in cloudy condition due to lacking information

of atmosphere. New method of estimating should
be proposed to fulfill the need ofwater vapor retrieval. According
to the analysis of relationship between and bands
combination of AMSR-E in clear condition, it was found that

can be expressed using a multiple linear regres-
sion equation

where , , , , and are regression coefficients. , , ,
and are ratios of vertical and horizontal polarimetric bright-
ness temperatures at frequencies 6.925, 10.65, 18.7, and
36.5 GHz, respectively. is microwave vegetation index
[29] at low frequencies (6.925 and 10.65 GHz). As a verification
of (5), a random research area with pixels in clear
condition is selected, and coefficients , , , , and are
estimated using multiple linear regression method with datasets
including original (estimated using lookup table
methodmentioned above), , , , , and from the
selected area. With these coefficients, a new estimated

in clear condition can be calculated using (5).
Fig. 4 shows scatter plot of the estimated and
original . The correlation coefficient of the two is
about 0.66. Although the correlation coefficient is not very high,
it indicates that (5) can be used to do an initial estimate of real

, and the initial estimate of will be
further improved by newmethod introduced in the following part
of this section.

For the original in clear condition, the value in
each pixel is divided by mean value of its surrounding

. This process can greatly remove the effect of
atmosphere and enhance the information of land surface. The
same processing method is applied to , which
is corresponding to the original . The processed

and are named as “adjusted
” and “adjusted ” for conve-

nience. Fig. 5 shows scatter plot of the two adjusted datasets.
This figure shows that the two datasets have very good linear

Fig. 3. Sensitivity of water vapor to with surface temperature =
300 K and .

Fig. 4. Scatter diagram of estimated and real in clear condition.
The solid line is diagonal.

JI AND SHI: WATER VAPOR RETRIEVAL OVER CLOUD COVER AREA ON LAND 3109



correlation. The correlation coefficient of the two is 0.9799.
Root-mean-square-error (RMSE) is 0.0311. The slope and inter-
cept of the regression function are 0.99 and 0.0108, respectively.
Good correlation of the two adjusted datasets provides a new
method to improve the estimation of . Equation (6)
shows a method to improve the estimation of
based on the outcome of (5)

where is the value to be estimated, and are
column and row number of the pixel in the image.

is a mean value of
pixels grid whose center is the pixel that locates at

positions and . is
that locates at positions and .

is a mean value of
pixel grid whose center is the pixel that locates at positions
and .

In cloudy condition, the initial estimate of is
also calculated using (5) on a pixel-by-pixel basis. For a pixel in
cloudy condition, coefficients in (5) should be first calculated
before estimating . The method to select datasets
to calculate coefficients in (5) is shown in Fig. 6. In this figure,

of red point locating at center of grid in
Day is the point that will be estimated using (5). The datasets
including , , , , , and in clear
condition locating at the grids from Day to Day

are selected to calculate coefficient in (5) using multiple
linear regression method. With the calculated coefficients,

at the red point in Day can be estimated using
the corresponding , , , , and in Day . The

of all pixels in cloudy condition can be estimated
pixel by pixel using the samemethod. However, it is not accurate
enough to retrievewater vapor using the estimated
from (5). As an improvement, (6) is used to further improve the
estimated .

With the method mentioned above, the surface emissivity
parameter in cloudy condition can be estimated
precisely enough to be used in the retrieval of atmospheric water
vapor. Although the in cloudy condition is not as
precise as it is in clear condition, it provides a new way to
estimate and optimize the estimation of .

C. Cloud Effect Analysis

Existence of clouds brings great difficulty to the retrieval of
atmospheric water vapor. On the one hand, clouds existence
obstacles signals emitted from surface transferred to satellite and
makes it difficult to estimate surface boundary parameters under
cloud. This problem is solved to a certain extent in Section IV in
the retrieval of atmospheric water vapor in this study. On the
other hand, signals attenuated or emitted by clouds will contrib-
ute to the signal of water vapor. Although water vapor sensitive
bands combination ( ) is selected to suppress
the effect of cloud in the retrieval of atmosphericwater vapor, it is
not possible to eliminate the effect of cloud completely. As the
absorption coefficient of a cloud is simply proportional to the
mass density of the water contained in the cloud independent of
the details of the size distribution of the droplets as long as all the
particles are much smaller than the wavelength [30], the effect of
clouds to is mainly contributed by cloud
liquid water. Fig. 7 shows a simulation of 1-DMWRTM. In this
figure, sensitivities of normalized ratio of at two frequen-
cies to cloud liquid water are represented in different line types.
According to Fig. 7, has the least sensitivity
to cloud liquid water compared with other frequencies combina-
tion, but there is still about 10% change in ,
as the cloud liquid water increasing from 0 to 1 mm, and this
change will finally affect the precision of retrieved water vapor.
A quantitative analysis of cloud effects to
is very necessary, as it may improve the accuracy of retrieved
water vapor.

According to a simulation by 1-DMWRTM, the effect of
cloud fraction and cloud liquid water to is
analyzed and the simulation is shown in Fig. 8. This figure shows
the effect of cloud to , when

. In Fig. 8, the abscissa values are cloud fraction

Fig. 5. Scatter diagram of adjusted and .

Fig. 6. Data selected to calculate coefficients in (5).
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and the ordinate values are errors of caused by
cloud and different line types in the plot denote different cloud
liquid water. From Fig. 8, we can see that the error of

increases with cloud fraction and cloud liquid
water. When cloud fraction is equal to 1 and cloud liquid water is
up to 1 mm, the maximum error of caused by
cloud is about 0.16. While in natural state, it is rare that cloud
liquid water reaches up to 1mm. For example, for all liquidwater
path (LWP) retrievals based on a ground-based microwave
radiometer at the ARM SGP site over an entire year (including
both clear and cloudy conditions), retrieved LWP was less than
0.1 mm about 83% of the time, and about 12% of the LWP
retrievals in the same dataset exceeded 0.2mm [12]. Cloud liquid
water of 0.1 and 0.2 mm will cause 0.016 and 0.03 changes in

, respectively. Fig. 9 shows sensitivity of
water vapor to , and the fitting equation of
the two is , where is water
vapor and is . We differentiate this equation

with respect to , and then we get equation
. From this equation, errors

of 0.16, 0.03, and 0.016 corresponding to the retrieved water
vapor errors are 12.3, 2.3, and 1.2 mm, respectively, at position

. As the clouds with 1 mm of cloud liquid water seldom
appear commonly, the error of retrieved water vapor caused by
cloud is less than about 2.3 mm and 83% of the errors will be less
than 1.2 mm. Although the error caused by cloud is very small
comparedwithwater vapor of thewhole layer of atmosphere, it is
necessary to do correction to remove the effect of thick cloud and
to further improve the accuracy of water vapor. As a correction
method for cloud effect, a lookup table method is used. The
lookup table is built using 1-DMWRTM, and it includes four
fields, , cloud liquid water, cloud fraction in a
pixel, and error of .When applying correction,
the value of , cloud liquidwater, and cloud fraction
in a pixel are used as input parameters and then the error of

is calculated using a lookup table searching
method. Finally, the error of is subtracted
from to get a corrected .
The value of is estimated using the method
mentioned in Section III-B, and the value of cloud liquid water
and cloud fraction is retrieved from MODIS cloud product
(MYD06). However, due to the limitation of the algorithm of
MODIS cloud product, only daytime cloud liquid water data are
provided by MYD06. So, in this research, only daytime

data are corrected in the water vapor retrieval.

D. Water Vapor Retrieval

In the retrieval of atmospheric water vapor, vertical distribu-
tion variation in water vapor profile will also affect brightness
temperature at the top of atmosphere. The variation destroys
monotonic changing property of as water
vapor increases and will bring errors to the retrieval of water
vapor. As a solution to reduce the errors, transmittances of
water vapor at frequencies 18.7 and 23.8 GHz are used as

Fig. 7. Sensitivity of normalized ratio of at two frequencies to cloud liquid
water.

Fig. 8. Simulated error of caused by cloud using
1-DMWRTM, when is 0.8.

Fig. 9. Simulated sensitivity of water vapor to by 1-
DMWRTM, when surface temperature is 296 K and is 0.8026.
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intermediate variables to retrieve water vapor. In the retrieval
process, the transmittance of water vapor is first retrieved and
then it is converted towater vapor. These transmittances are good
indicators of water vapor, and at the same time, they can reduce
errors caused by vertical variation in profiles to a certain extent by
weighed averaging water vapor transmittances estimated at
different frequencies.

Before we finally get the retrieved atmospheric water vapor,
transmittances ofwater vapor at frequency 18.7 and 23.8GHz are
first estimated using the lookup tablemethod. The lookup table is
built based on the theories mentioned in Section III-A with the
help of 1-DMWRTM, and it contains four fields: surface tem-
perature, , transmittance at a frequency, and

. There are two frequencies (18.7 and
23.8 GHz), so two lookup table of this kind will be built. In
order to convert transmittance at different frequencies to water
vapor, another lookup table is build using atmospheric profiles
from radiosonde observations and 1-DMWRTM. The lookup
table contains column water vapor of the atmospheric profiles
from radiosonde and its corresponding two transmittances of
water vapor at frequency 18.7 and 23.8GHz. Total error between
the estimated transmittances at the two frequencies and that in the
lookup table is calculated using (7).

where is the total error, and are transmittances
estimated using the methodmentioned in the last paragraph.
and are transmittances derived from lookup table. Water
vapor values corresponding to the 10 smallest will be selected
in the lookup table and then those water vapor values will be
combined together to form thefinal retrieved columnwater vapor
using (8)

where CWV is the final retrieved water vapor, is one of
water vapor selected from the lookup table, is
weight coefficient corresponding to , and it is calculated
using (9)

In (9), the must be lower than 0.05, if not, the column

water vapor on the corresponding pixel will be set to invalid.
The following is a general description of atmospheric water

vapor retrieval algorithm. Fig. 10 shows the flowchart of water
vapor retrieval algorithm. Data used in the algorithm include
AMSR-E brightness temperature, MODIS products, and radio-
sonde observations. AMSR-E brightness temperature and
MODIS product are mainly used to estimate surface parameters
and column water vapor. Radiosonde observations are mainly
used to build lookup table.

As shown in Fig. 10, all the related AMSR-E and MODIS
products are re-projected into grid images. The

land sea mask derived from AMSR-E and cloud mask from
MODIS cloud mask product are used to constraint the algorithm
only running under cloud cover area on land. As our algorithm
is not suitable for rainy condition, the rainy pixels are
detected and removed using method mentioned in [31]. Then

is calculated using the re-projected AMSR-E
brightness temperature, and it is correctedwith cloud liquidwater
information of MODIS cloud product. Before water vapor
transmittance is estimated, we still need more information that
includes surface temperature estimated from AMSR-E and
MODIS product, surface emissivity parameter
estimated by the method mentioned in Section III-B, and
a lookup table. The lookup table is built to estimate water
vapor transmittances at frequencies 18.7 and 23.8 GHz using
1-DMWRTM and atmospheric profiles from radiosonde obser-
vations based on the theory mentioned in Section III-A. Four
fields are included in the lookup table; they are surface tempera-
ture, , water vapor transmittance at its correspond-
ing frequency, and .With this information, the
water vapor transmittance at 18.7 and 23.8 GHz can then be
estimated. In order to convert water vapor transmittance to
water vapor content, another lookup table is build using the
atmospheric profiles from radiosonde observations. The lookup
table contains water vapor content of atmospheric profiles from
radiosonde observations and their corresponding water vapor
transmittance at two frequencies, 18.7 and 23.8 GHz. At
last, with this converting lookup table, the water vapor is
retrieved.

Fig. 10. Flowchart of water vapor retrieval in this study.
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IV. VALIDATION AND ERROR ANALYSIS

A. Comparison With GPS Observation

The SuomiNet GPS retrieved PW vapor is used as the source
of validation data. Each of these sites provides an observation of
PW vapor every half hour. When using the GPS water vapor for
validation of AMSR-E, it is possible to account for the different
spatial scales of the two sensors by time averaging the GPS
observation [32]. In this study, an hourly averagedGPS-retrieved
PW vapor is used to validate column water vapor retrieved from
AMSR-E. In the validation, all the GPS sites observation data
from January 1, 2007 to January 31, 2007 and July 1, 2007 to July
31, 2007 located in USA over cloud cover area on land are used
as validation data. Fig. 11 shows the SuomiNet GPS sites
distribution map in USA. The upper figure shows available GPS
sites during January 2007 and the bottom figure shows available
GPS sites during July 2007.

In order to validate the effect of cloud correction inwater vapor
retrieval, two categories of water vapor are retrieved. One
category of water vapor is retrieved using original

. The other is retrieved using , which
is corrected using cloud liquid water information from MODIS.
The scatter plots of retrieved water vapor without considering
cloud effect versus the GPS retrieved water vapor are shown in
Fig. 12. This figure shows the comparison using data from
January to July 2007. According to the validation method by
[13] and [32], theworst 5%match-up data are removed fromboth
sides of regression line and the removed match-up data are also
plotted in the figure with symbol “ ”. This reduces the effects of
poor quality match-up data on the validation. There are two
reasons for the removing of worst match-up data. One of them is
that the spatial and temporal difference between observation of
satellite and GPS. The other is that none-detected drizzle and
light precipitation will impact the measurement of microwave
signal, which will result in an underestimation of atmospheric
water vapor [13]. With the datasets after removing the worst
match-up data, a statistic of the comparison is shown in Fig. 12.

In Fig. 12, the thick dashed line is the diagonal. The thin solid
line is the regression line of the two datasets. The slope and
the intercept of the regression line are 0.92 and 2.09 mm,
respectively. The correlation coefficient is 0.94 and the
RMSE is 4.85 mm. The lower value of slope indicates an
underestimation at high atmospheric water vapor, which may
attribute to an increment of undetected light precipitation in
summer season.

AsMODIS onboard AQUAonly providing cloud liquid water
information in daytime, the retrieved two water vapor categories
in ascending orbit are used in the comparison. Fig. 13 shows
scatter plot of retrieved column water vapor in ascending orbit
without cloud liquid water correction versus GPS-retrieved PW
vapor in January and July 2007. Fig. 14 shows same scatter plot,
but the retrieved column water vapor is corrected using cloud

Fig. 11. SuomiNet GPS sites distribution map in USA, the upper figure is
available GPS sites in January 2007; the bottom figure is available GPS sites in
July 2007.

Fig. 12. Scatter diagram of retrieved water vapor versus GPS water vapor,
January and July 2007. The dashed line is diagonal and the solid line is regression
line of the two comparison datasets.

Fig. 13. Scatter plot of retrieved water vapor in ascending orbit without cloud
liquid water correction versus GPS retrieved water vapor, January and July 2007.
The dashed line is diagonal and the solid line is regression line of the two
comparison datasets.
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liquid water information from MODIS. In Fig. 13, the slope and
intercept of the regression line are 0.94 and 1.86, respectively, the
correlation coefficient is 0.96, and the RMSE is 4.19 mm. In
Fig. 14, the corresponding four parameters are 0.95, 0.70, 0.96,
and 4.41 mm, respectively. According to the comparison of the
two scatter plots, a correction of cloud liquid water effect to the
retrieved water vapor improves the intercept of regression equa-
tion from 1.86 to 0.70 and slope of regression equation from 0.94
to 0.95. However, the correction of cloud does not bring any
improvement to correlation coefficient and RMSE. There are
manyreasonsforsuchlittle improvement.Themost importantone
is that83%errorscausedbycloudis less than1.2mmasmentioned
above, this error estimation is based on that the cloud liquidwater
is correctly known. However, on satellite Aqua, the currently
availablecloudliquidwaterover landisonlyprovidedbyMODIS.
Thecloud liquidwater fromMODISis retrievedonlyaccording to
cloud top information. Itwill bringgreat errors in situationof thick
clouds ormulti-layer clouds.Another reasonmay attribute to data
and model used in the correction of cloud effect. It is difficult for
themodel 1-DMWRTMto simulatemicrowave radiative transfer
process in cloud precisely, as the complexity, quick change of
clouds, and limited understanding coupling effect of water vapor
and cloud liquidwater in radiative transfer process. These above-
mentioned reasons affect the correction of cloud liquid water on
the retrieval of atmospheric water vapor. The theory of the
coupling effect of water vapor and cloud and the retrieval of
cloud liquid water over land are beyond the scope of this study. It
needs further study in future about these problems.

B. Map of Atmospheric Water Vapor Distribution

Currently, there is no passive microwave radiometer such as
TRMM-TMI and AMSR-E providing available water vapor
dataset over land. Satellite-based infrared water vapor retrievals
are also limited by clouds. Lack of precise water vapor over land
may bring limitation to the research of climate system and
hydrological cycle. The algorithm in this study provides a new

solution to retrieve atmospheric water vapor over land on cloudy
condition, which makes it possible to create a complete atmo-
spheric water vapor map over land for every swath of satellite
observation combined with water vapor data retrieved from
MODIS in clear condition. For view of water vapor distribution
in spatial scale, Fig. 15 shows water vapor distribution map of
U.S. mainland derived from Aqua satellite in ascending orbit on
July 1, 2007. Fig. 15(a) shows a map of atmospheric water vapor
in cloudy condition retrieved using algorithm in this study based
on the data of AMSR-E; Fig. 15(b) shows an atmospheric water
vapor data fromMODIS onboardAqua satellite, and Fig. 15(c) is
a combination of Fig. 15(a) and (b), as it shows a complete
atmospheric water map over U.S. mainland except the area with
precipitation or that lack of observation. From the map of
atmospheric water vapor, it shows obvious regional distribution
difference. Most of water vapor with the highest value reaching
up to 65mmdistributes in south east part of U.S. mainland due to
the Warm Current of Mexico Gulf that brings abundant water
vapor to Florida and the surrounding area. Low water vapor
(lower than 3 mm) occurs in the western inland area of America,
which attribute to Rocky Mountain that blocks warm current
coming from the Pacific.

Fig. 14. Scatter plot of retrieved water vapor in ascending orbit with cloud liquid
water correction versus GPS retrieved water vapor, January and July 2007. The
dashed line is diagonal and the solid line is regression line of the two comparison
datasets.

Fig. 15. Atmospheric water vapor distribution map of USA on July 1, 2007,
ascending orbit: (a) the distribution of atmospheric water vapor retrieved by
AMSR-E under cloudy condition, (b) the distribution of atmospheric water vapor
in clear condition from MODIS water vapor product, and (c) a combination of
atmospheric water vapor distribution from (a) and (b).
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C. Possible Error Sources in Retrieval

Although the error of retrieved atmospheric water vapor has
improved a lot compared with former research, there are still
some factors that are to be considered in actual retrieval. First of
all, the accuracy of estimated surface emissivity parameter

plays an important role to the precision of re-
trieved atmospheric water vapor. As signal from surface con-
tributesmost part of signal received by satellite, a small change in
surface condition will bring great uncertainty to the retrieved
water vapor. However, a new method had been put forward in
this study to estimate the surface emissivity parameter

with the combination of AMSR-E brightness
temperature and MODIS atmospheric products. Although the
method cannot eliminate the error caused by uncertainty of
surface emissivity, it reduces the error of retrieved atmospheric
water vapor to acceptable levels over land. Cloud existence is
another factor that affects retrieval of water vapor. On one hand,
it affects estimation of surface emissivity parameter. On the other
hand, signal from water vapor is contaminated by scatter,
absorption of cloud, and signal emitted from cloud. It is difficult
to entirely distinguish cloud information from water vapor. As a
solution, the bands combination can effec-
tively suppress signal of cloud from water vapor. It can reduce
83% errors caused by cloud to less than 1.2 mm. The errors
caused by cloud can be further reduced, if cloud liquid water
information is provided. However, it is also difficult to retrieve
cloud liquid water over land. It will need further research to solve
this problem in the future. The third error source is the uncer-
tainty of surface temperature. The error of the estimated surface
temperature is 4.5 K [28]; the impact of uncertainty of surface
temperature can be ignored when the water vapor is small in
atmosphere, but it increases as water vapor getting larger in
atmosphere, typically in summer. Furthermore, light precipita-
tion may not be effectively detected. The light precipitation can
scatter and absorb the signal emitted from surface or water vapor
of lower atmosphere and place an impact on the brightness
temperature of radiometer, which result in an underestimated
of atmospheric water vapor [13]. Finally, the error caused by the
model 1-DMWRTM should not be ignored.

V. CONCLUSION

In this study, a newly developed algorithm is used to retrieve
atmospheric water vapor in cloudy condition without precipita-
tion over land based on the measurement of AMSR-E and
MODIS. A water vapor sensitivity parameter

defined in [12] is used in the retrieval with the help
of a newly developed surface emissivity parameter estimation
method.

An advantage of this algorithm is the estimation of surface
emissivity parameter in cloudy condition over
land using the measurement of AMSR-E combined with
MODIS. As the signal received by passive microwave radiome-
ter is a combination signal of ground surface and atmosphere, it is
of vital importance to precisely estimate . Com-
pared to algorithms that ignore or set surface emissivity to a
constant, the estimation of surface emissivity can effectively

reduce errors caused by variation of surface condition in spatial
and temporal scale, especially over land.

Cloud is the biggest obstacle in the retrieval of water vapor in
cloudy condition. It not only brings difficulty to directly estima-
tion of the surface emissivity parameter but also
contaminates signal of water vapor received by satellite. For the
first problem, the in cloudy condition can be
estimated according to (5) and (6). For the second problem, the
combination of bands can greatly enhance the
information of water vapor and suppress the signal of cloud.
Although cannot entirely remove the effect of
cloud, it is able to reduce 83% errors caused by clouds to less than
1.2 mm. As a further step to remove the effect of cloud, cloud
liquid water and cloud fraction information from MODIS are
used in retrieval of water vapor. However, it only brings little
improvement to the retrievedwater vapor, whichmay attribute to
the cloud liquid water provided by MODIS being not accurate
enough. It needs further research in the future to separate cloud
from water vapor signal.

The column water vapor was retrieved in cloudy condition
over U.S. mainland in January and July of 2007. It was compared
with GPS retrieved water vapor. According to the comparison,
the RMSE-retrieved atmospheric water vapor in this study is
4.85 mm. The precision is acceptable for passive microwave
remote sensing of atmospheric water vapor over land compared
with the retrieved water vapor with RMSE of 6 mm over land in
[12] and RMSE of 4.9 mm in cloudy condition over land in [17].

The algorithm for retrieval of water vapor using passive
microwave remote sensing in cloudy condition over land is a
complement to current water vapor retrieval algorithm. It can be
used to produce a full cover water vapor map on each swath of
observation combined with MODIS water vapor product. The
algorithm is also suitable for other microwave radiometer such as
TRMM-TMI or the newly launched AMSR2 with the help of
geostationary satellite, and it will provide more valuable infor-
mation for the research of climate change and hydrologic cycle.
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